Menu Close

Find-out-pairs-of-numbers-a-b-as-many-as-you-can-such-that-a-b-a-b-a-2-b-2-P-




Question Number 159925 by Rasheed.Sindhi last updated on 22/Nov/21
Find out pairs of numbers (a,b) (as  many as you can) such that:  (√a) +(√b) , a+b , a^2 +b^2  ∈ P
Findoutpairsofnumbers(a,b)(asmanyasyoucan)suchthat:a+b,a+b,a2+b2P
Answered by nikif99 last updated on 23/Nov/21
Pairs (a, b) up to 121:  (4, 9), (4, 25), (9, 64), (25, 64),   (36, 121), (49, 100), (81, 100).
Pairs(a,b)upto121:(4,9),(4,25),(9,64),(25,64),(36,121),(49,100),(81,100).
Commented by Rasheed.Sindhi last updated on 23/Nov/21
Thanks sir!
Thankssir!
Commented by Rasheed.Sindhi last updated on 23/Nov/21
What′s the maximum value of n for  which a+b,a^2 +b^2 ,a^3 +b^3 ,...,a^n +b^n ∈P
Whatsthemaximumvalueofnforwhicha+b,a2+b2,a3+b3,,an+bnP
Commented by Rasheed.Sindhi last updated on 23/Nov/21
Or if m<n,what is the maximum value  of n−m for which  a^m +b^m ,a^(m+1) +b^(m+1) ,a^(m+2) +b^(m+2) ,...,a^n +b^n ∈P
Orifm<n,whatisthemaximumvalueofnmforwhicham+bm,am+1+bm+1,am+2+bm+2,,an+bnP
Commented by nikif99 last updated on 23/Nov/21
If you omit the demand (√a)+(√b) ∈P,  the number of acceptable pairs   increase enormously.  Nevertheless, max(n) seems to be 2.  P.S. Another pair till 200: (100,169).
Ifyouomitthedemanda+bP,thenumberofacceptablepairsincreaseenormously.Nevertheless,max(n)seemstobe2.P.S.Anotherpairtill200:(100,169).
Commented by Rasheed.Sindhi last updated on 23/Nov/21
Thanks a lot sir! You′re right because  a^3 +b^3  is always composite.  The claim should be:  a+b,a^2 +b^2 ,a^4 +b^4 ,a^8 +b^8 ,...∈P  Your provided examples are   successful upto 3 levels.For example  If instead of (100,169) if we  consider (a,b)=((√(100)) ,(√(169)) )=(10,13)  10+13=23∈P  10^2 +13^2 =269∈P  10^4 +13^4 =38561∈P  Thanks for attention!
Thanksalotsir!Yourerightbecausea3+b3isalwayscomposite.Theclaimshouldbe:a+b,a2+b2,a4+b4,a8+b8,PYourprovidedexamplesaresuccessfulupto3levels.ForexampleIfinsteadof(100,169)ifweconsider(a,b)=(100,169)=(10,13)10+13=23P102+132=269P104+134=38561PThanksforattention!
Commented by nikif99 last updated on 23/Nov/21
Excellent post! Thank you too.
Excellentpost!Thankyoutoo.
Commented by Rasheed.Sindhi last updated on 24/Nov/21
��������

Leave a Reply

Your email address will not be published. Required fields are marked *