Menu Close

Find-out-x-y-such-that-gcd-x-3-y-2-gcd-x-2-y-3-




Question Number 62244 by Rasheed.Sindhi last updated on 18/Jun/19
Find out x,y, such that        gcd(x^3 ,y^2 )=gcd(x^2 ,y^3 )
Findoutx,y,suchthatgcd(x3,y2)=gcd(x2,y3)
Commented by mr W last updated on 18/Jun/19
one solution is:  x=Πp_i ^n_i    y=Πq_j ^m_j    with p,q=prime number and p≠q
onesolutionis:x=Πpiniy=Πqjmjwithp,q=primenumberandpq
Commented by Rasheed.Sindhi last updated on 19/Jun/19
Thanks Sir!   Waiting for solutions when x & y are    noncoprime with some workings.
ThanksSir!Waitingforsolutionswhenx&yarenoncoprimewithsomeworkings.
Commented by Rasheed.Sindhi last updated on 23/Jun/19
The question having no market value!
Thequestionhavingnomarketvalue!
Answered by Rasheed.Sindhi last updated on 21/Jun/19
x=Πp_i ^a_i     y=Πp_i ^b_i   :    p_i ∈P  ∧  a_i ,b_i ∈W    gcd(x^3 ,y^2 )=gcd(x^2 ,y^3 )   ⇒gcd( (Πp_i ^a_i  )^3 ,(Πp_i ^b_i  )^2 )=gcd( (Πp_i ^a_i  )^2 ,(Πp_i ^b_i  )^3 )   ⇒gcd( Πp_i ^(3a_i )  , Πp_i ^(2b_i ) )=gcd( Πp_i ^(2a_i ) , (Πp_i ^(3b_i ) )  ⇒Πp_i ^(min(3a_i , 2b_i )) =Πp_i ^(min(2a_i , 3b_i ))    ⇒min(3a_i , 2b_i )=min(2a_i , 3b_i )  Possibilities:       A:    3a_i >2b_i   ∧  { ((2a_i >3b_i ...(i))),((2a_i =3b_i ...(ii))),((2a_i <3b_i ...(iii))) :}       B:    3a_i =2b_i  ∧  { ((2a_i >3b_i ...(i))),((2a_i =3b_i ...(ii))),((2a_i <3b_i ...(iii))) :}   _     C:   3a_i <2b_i  ∧ { ((2a_i >3b_i ...(i))),((2a_i =3b_i ...(ii))),((2a_i <3b_i ...(iii))) :}    A(i):  3a_i >2b_i   ∧ 2a_i >3b_i         min(3a_i , 2b_i )=min(2a_i , 3b_i )         ⇒2b_i =3b_i ⇒b_i =0  A(ii): 3a_i >2b_i  ∧ 2a_i =3b_i       min(3a_i , 2b_i )=min(2a_i , 3b_i )      ⇒2b_i =3b_i =2a_i ⇒a_i =b_i =0  A(iii): 3a_i >2b_i  ∧ 2a_i <3b_i      min(3a_i , 2b_i )=min(2a_i , 3b_i )      ⇒2b_i =2a_i ⇒a_i =b_i     B(i): 3a_i =2b_i  ∧ 2a_i >3b_i        min(3a_i , 2b_i )=min(2a_i , 3b_i )      ⇒3a_i =2b_i =3b_i ⇒a_i =b_i =0  B(ii): 3a_i =2b_i  ∧ 2a_i =3b_i         min(3a_i , 2b_i )=min(2a_i , 3b_i )     ⇒3a_i =2b_i =2a_i =3b_i ⇒a_i =b_i =0  B(iii): 3a_i =2b_i  ∧ 2a_i <3b_i          min(3a_i , 2b_i )=min(2a_i , 3b_i )    ⇒3a_i =2b_i =2a_i ⇒a_i =b_i =0    C(i): 3a_i <2b_i  ∧ 2a_i >3b_i        min(3a_i , 2b_i )=min(2a_i , 3b_i )      ⇒3a_i =3b_i ⇒a_i =b_i   C(ii): 3a_i <2b_i  ∧ 2a_i =3b_i         min(3a_i , 2b_i )=min(2a_i , 3b_i )  ⇒3a_i =2a_i =3b_i ⇒a_i =b_i   C(iii): 3a_i <2b_i  ∧ 2a_i <3b_i         min(3a_i , 2b_i )=min(2a_i , 3b_i )       ⇒3a_i =2a_i ⇒a_i =0    Possible conditions for exponents of   prime factors of x & y  (i) a_i =0 : x  contain/s  factor/s   p_i ^0         while y cotain/s   p_i ^m  where m∈W.        For simple example x= p_i ^0  =1& y=p_i ^m       gcd((1)^3 ,(p_i ^m )^2 )=gcd((1)^2 ,(p_i ^m )^3 )=1   (ii) b_i =0/a_i =b_i =0 : Similar explanation    (iii) a_i =b_i :x & y both contain  p_i ^k     Any combination of these conditions  can be applied. For an example  Solution:  x=Πp_i ^0 ×Πp_j ^m_j  ×Πp_k ^n_k    y=Πp_i ^l_i  ×Πp_j ^0 ×Πp_k ^n_k
x=Πpiaiy=Πpibi:piPai,biWgcd(x3,y2)=gcd(x2,y3)gcd((Πpiai)3,(Πpibi)2)=gcd((Πpiai)2,(Πpibi)3)gcd(Πpi3ai,Πpi2bi)=gcd(Πpi2ai,(Πpi3bi)Πpimin(3ai,2bi)=Πpimin(2ai,3bi)min(3ai,2bi)=min(2ai,3bi)Possibilities:A:3ai>2bi{2ai>3bi(i)2ai=3bi(ii)2ai<3bi(iii)B:3ai=2bi{2ai>3bi(i)2ai=3bi(ii)2ai<3bi(iii)C:3ai<2bi{2ai>3bi(i)2ai=3bi(ii)2ai<3bi(iii)A(i):3ai>2bi2ai>3bimin(3ai,2bi)=min(2ai,3bi)2bi=3bibi=0A(ii):3ai>2bi2ai=3bimin(3ai,2bi)=min(2ai,3bi)2bi=3bi=2aiai=bi=0A(iii):3ai>2bi2ai<3bimin(3ai,2bi)=min(2ai,3bi)2bi=2aiai=biB(i):3ai=2bi2ai>3bimin(3ai,2bi)=min(2ai,3bi)3ai=2bi=3biai=bi=0B(ii):3ai=2bi2ai=3bimin(3ai,2bi)=min(2ai,3bi)3ai=2bi=2ai=3biai=bi=0B(iii):3ai=2bi2ai<3bimin(3ai,2bi)=min(2ai,3bi)3ai=2bi=2aiai=bi=0C(i):3ai<2bi2ai>3bimin(3ai,2bi)=min(2ai,3bi)3ai=3biai=biC(ii):3ai<2bi2ai=3bimin(3ai,2bi)=min(2ai,3bi)3ai=2ai=3biai=biC(iii):3ai<2bi2ai<3bimin(3ai,2bi)=min(2ai,3bi)3ai=2aiai=0Possibleconditionsforexponentsofprimefactorsofx&y(i)ai=0:xcontain/sfactor/spi0whileycotain/spimwheremW.Forsimpleexamplex=pi0=1&y=pimgcd((1)3,(pim)2)=gcd((1)2,(pim)3)=1(ii)bi=0/ai=bi=0:Similarexplanation(iii)ai=bi:x&ybothcontainpikAnycombinationoftheseconditionscanbeapplied.ForanexampleSolution:x=Πpi0×Πpjmj×Πpknky=Πpili×Πpj0×Πpknk
Commented by Rasheed.Sindhi last updated on 21/Jun/19
Note:The answer is almost complete  although it is not perfect.  The answer suggest a general method how to  compose x & y to meet the condition     gcd(x^3 ,y^2 )=gcd(x^2 ,y^3 )    Rule1: If any prime factor in x (or y)  has exponent 0, same prime in y(or in x)  has any exponent from whole numbers.  Rule2: If any prime has exponent other  than 0 in x (or y),same prime in y(or x  has same exponent.  x=3^2 .7^0 .2^4 =144  y=3^2 .7^3 .2^0 =3087    ^• exponents equal  ^• exponent 0 in a primefactor of x    Any exponent in the same prime of y  ^• exponent 0 in a primefactor of y    Any exponent in the same prime of x
Note:Theanswerisalmostcompletealthoughitisnotperfect.Theanswersuggestageneralmethodhowtocomposex&ytomeettheconditiongcd(x3,y2)=gcd(x2,y3)Rule1:Ifanyprimefactorinx(ory)hasexponent0,sameprimeiny(orinx)hasanyexponentfromwholenumbers.Rule2:Ifanyprimehasexponentotherthan0inx(ory),sameprimeiny(orxhassameexponent.x=32.70.24=144y=32.73.20=3087exponentsequalexponent0inaprimefactorofxAnyexponentinthesameprimeofyexponent0inaprimefactorofyAnyexponentinthesameprimeofx
Commented by Rasheed.Sindhi last updated on 23/Jun/19
Worthless answer of worthless question!
Worthlessanswerofworthlessquestion!

Leave a Reply

Your email address will not be published. Required fields are marked *