Menu Close

Find-p-and-q-such-that-p-2-q-2-101-2-Where-p-q-Z-different-from-zero-




Question Number 113689 by Ar Brandon last updated on 14/Sep/20
Find p and q such that  p^2 +q^2 =101^2 . Where p, q∈Z   different from zero.
Findpandqsuchthatp2+q2=1012.Wherep,qZdifferentfromzero.
Commented by Rasheed.Sindhi last updated on 14/Sep/20
p=20,q=99 or p=99,q=20
p=20,q=99orp=99,q=20
Answered by nimnim last updated on 14/Sep/20
If a,b and c are primitive pythagorean triples  then:−  Case(1) when a=odd,          b=(a^2 /2)−(1/2) and c=(a^2 /2)+(1/2)   Let a=13, c=((169)/2)+(1/2)=85≠101           a=15, c=((225)/2)+(1/2)=113≠101   Case(2) when a=even             b=((a/2))^2 −1 and c=((a/2))^2 +1   Let a=20, c=(((20)/2))^2 +1=101           b=(((20)/2))^2 −1=99  ⇒(p,q)=(20,99) or (99,20)
Ifa,bandcareprimitivepythagoreantriplesthen:Case(1)whena=odd,b=a2212andc=a22+12Leta=13,c=1692+12=85101a=15,c=2252+12=113101Case(2)whena=evenb=(a2)21andc=(a2)2+1Leta=20,c=(202)2+1=101b=(202)21=99(p,q)=(20,99)or(99,20)
Answered by Rasheed.Sindhi last updated on 15/Sep/20
If m & n  are  any positive  integers with m>n  (m^2 −n^2 ,2mn,m^2 +n^2 ) is a  pathagorean triplet.  This rule is perfect,it can produce  all the pathagorean triplets and  that also means that for every  triplet there exist m & n which  can produce that triplet.  Here (p,q,101) is pathagorean  triplet so   m^2 +n^2 =101  or m^2 =101−n^2 . Clearly  n≤⌊(√(101)) ⌋,so we′ve to find such  n for which 101−n^2  is perfect  square between 1 and 10.  Hence n=1,10 are only proper   values and corresponding values  of m are 10 ,1.Since m>n so  (m,n)=(10,1)  p=m^2 −n^2 =10^2 −1^2 =99  q=2mn=2(10)(1)=20  Or  p=2mn=20  q=m^2 −n^2 =99  Since p,q∈Z  (p,q)=(20,99),(20,−99),                 (−20,99),(−20,−99),                (99,20),(99,−20),               (−99,20),(−99,−20).
Ifm&nare\boldsymbolanypositiveintegerswithm>n(m2n2,2mn,m2+n2)isapathagoreantriplet.Thisruleisperfect,itcanproduce\boldsymbolallthepathagoreantripletsandthatalsomeansthatfor\boldsymboleverytripletthereexistm&nwhichcanproducethattriplet.Here(p,q,101)ispathagoreantripletsom2+n2=101orm2=101n2.Clearlyn101,sowevetofindsuchnforwhich101n2isperfectsquarebetween1and10.Hencen=1,10areonlypropervaluesandcorrespondingvaluesofmare10,1.Sincem>nso(m,n)=(10,1)p=m2n2=10212=99q=2mn=2(10)(1)=20Orp=2mn=20q=m2n2=99Sincep,qZ(p,q)=(20,99),(20,99),(20,99),(20,99),(99,20),(99,20),(99,20),(99,20).
Answered by 1549442205PVT last updated on 16/Sep/20
We known that( a,b,c )is a triple of   Pythagor posirive integer numbers   where b^2 +c^2 =a^2   (a,b)=1if and only if c=uv,b=((u^2 −v^2 )/2),  a=((u^2 +v^2 )/2) where u,v are odd and coprime  .In the our problem p^2 +q^2 =101^2 (∗)  Since 101 is a prime,so (p,q)=1.  Hence,p=uv,q=((u^2 −v^2 )/2),((u^2 +v^2 )/2)=101  ⇔u^2 +v^2 =202⇒v<9<u≤13  i)If u=13 then v^2 =202−169=33⇒rejected  ii)If u=11 then v^2 =202−121=81=9^2   ⇒v=9⇒p=uv=99,q=((11^2 −9^2 )/2)=20  Since p,q  have  equal role in the  equation,we obtain   (p,q)∈{(99,20),(20,99).From this  follows (−p,q),(p,−q),(−p,−q)  also satisfying  second way:  If(p,q)is a root of (∗) then (−p,q),(p,−q)  and (−p,−q)are also roots of (∗).Hence  we just need find pairs (p,q)of positive  integer numbers of the equation(∗)  Since 101 is a prime number,p and q  are coprime( because suppose that   gcd(p,q)=d≠1 then p=md,q=nd with  (m,n)=1.Then p^2 +q^2 =101^2 (∗)  ⇔(m^2 +n^2 )d^2 =101^2 ⇒101⋮d which is  contradiction to the fact that 101 is prime)  .Furthermore,among two numbers p,q  must have one number is even and other  number is odd.Hence,WLOG suppose  p is odd and q is even.From that we have   (∗)⇔p^2 =(101+q)(101−q)  Put 101+q=m,101−q=n ⇒m>n,we  get p^2 =mn,q=((m−n)/2),101=((m+n)/2).  We see that m and n −coprime.  because of suppose the contrary, that  gcd(m,n)=d≠1.Then m=m_1 d,n=n_1 d  From that 101=((m+n)/2)=((m_1 +n_1 )/2)d  which  is impossible since 101 is prime  Therefore ,m and n are coprime.From  p^2 =mn and (m,n)=1 we infer   m=u^2 ,n=v^2 where u and v−coprime,  u>v >0 and are odd numbers.Finally,  we obtain  { ((p=uv(1))),((q=((u^2 −v^2 )/2)(2))),((101=((u^2 +v^2 )/2)(3))) :}  (3)⇔u^2 +v^2 =202⇒v<11≤u≤13  i)For u=13⇒v^2 =202−169=33⇒∄v∈Z  ii)For u=11⇒v^2 =202−121=81  ⇒v=9.Put into (1)(2) we get  (p,q)∈(99,20)and due to above note and the  equality of p and q in equation we get  (p,q)∈{99,20),(−99,20),(20,99),(20,−99),  (99,−20),(−99,−20),(−20,99),(−20,−99)}
Weknownthat(a,b,c)isatripleofPythagorposiriveintegernumberswhereb2+c2=a2(a,b)=1ifandonlyifc=uv,b=u2v22,a=u2+v22whereu,vareoddandcoprime.Intheourproblemp2+q2=1012()Since101isaprime,so(p,q)=1.Hence,p=uv,q=u2v22,u2+v22=101u2+v2=202v<9<u13i)Ifu=13thenv2=202169=33rejectedii)Ifu=11thenv2=202121=81=92v=9p=uv=99,q=112922=20Sincep,qhaveequalroleintheequation,weobtain(\boldsymbolp,\boldsymbolq){(99,20),(20,99).Fromthisfollows(p,q),(p,q),(p,q)alsosatisfying\boldsymbolsecond\boldsymbolway:If(p,q)isarootof()then(p,q),(p,q)and(p,q)arealsorootsof().Hencewejustneedfindpairs(p,q)ofpositiveintegernumbersoftheequation()Since101isaprimenumber,pandqarecoprime(becausesupposethatgcd(p,q)=d1thenp=md,q=ndwith(m,n)=1.Thenp2+q2=1012()(m2+n2)d2=1012101dwhichiscontradictiontothefactthat101isprime).Furthermore,amongtwonumbersp,qmusthaveonenumberisevenandothernumberisodd.Hence,WLOGsupposepisoddandqiseven.Fromthatwehave()p2=(101+q)(101q)Put101+q=m,101q=nm>n,wegetp2=mn,q=mn2,101=m+n2.Weseethatmandncoprime.becauseofsupposethecontrary,thatgcd(m,n)=d1.Thenm=m1d,n=n1dFromthat101=m+n2=m1+n12dwhichisimpossiblesince101isprimeTherefore,mandnarecoprime.Fromp2=mnand(m,n)=1weinferm=u2,n=v2whereuandvcoprime,u>v>0andareoddnumbers.Finally,weobtain{p=uv(1)q=u2v22(2)101=u2+v22(3)(3)u2+v2=202v<11u13i)Foru=13v2=202169=33vZii)Foru=11v2=202121=81v=9.Putinto(1)(2)weget(p,q)(99,20)andduetoabovenoteandtheequalityofpandqinequationweget(p,q){99,20),(99,20),(20,99),(20,99),(99,20),(99,20),(20,99),(20,99)}

Leave a Reply

Your email address will not be published. Required fields are marked *