Menu Close

find-particular-solution-of-D-3-4D-y-sin-2x-by-using-inverse-operation-




Question Number 118574 by bramlexs22 last updated on 18/Oct/20
find particular solution of   (D^3 +4D) y = sin 2x by using  inverse operation ?
$${find}\:{particular}\:{solution}\:{of}\: \\ $$$$\left({D}^{\mathrm{3}} +\mathrm{4}{D}\right)\:{y}\:=\:\mathrm{sin}\:\mathrm{2}{x}\:{by}\:{using} \\ $$$${inverse}\:{operation}\:? \\ $$
Answered by TANMAY PANACEA last updated on 18/Oct/20
y=((sin2x)/(D(D^2 +4)))  y=(e^(i2x) /(D(D^2 +4)))  =(e^(i2x) /((i2){(D+i2)^2 +4}))  =(e^(i2x) /((i2)(D^2 +4iD)))  =(e^(i2x) /((i2)))×(1/(D×4i×(1+(D/(4i)))))  =(1/(−8))×(1/((1+((i2)/(4i)))))×(e^(i2x) /1)×x  =(1/(−8))×(2/3)×((cos2x+isin2x)/1)×x  =(x/(−12))(cos2x)+i×(x/(−12))(sin2x)  P.I=(x/(−12))×sin2x→y=((xsin2x)/(−12))  pls check my answer
$${y}=\frac{{sin}\mathrm{2}{x}}{{D}\left({D}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$$${y}=\frac{{e}^{{i}\mathrm{2}{x}} }{{D}\left({D}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$$$=\frac{{e}^{{i}\mathrm{2}{x}} }{\left({i}\mathrm{2}\right)\left\{\left({D}+{i}\mathrm{2}\right)^{\mathrm{2}} +\mathrm{4}\right\}} \\ $$$$=\frac{{e}^{{i}\mathrm{2}{x}} }{\left({i}\mathrm{2}\right)\left({D}^{\mathrm{2}} +\mathrm{4}{iD}\right)} \\ $$$$=\frac{{e}^{{i}\mathrm{2}{x}} }{\left({i}\mathrm{2}\right)}×\frac{\mathrm{1}}{{D}×\mathrm{4}{i}×\left(\mathrm{1}+\frac{{D}}{\mathrm{4}{i}}\right)} \\ $$$$=\frac{\mathrm{1}}{−\mathrm{8}}×\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{{i}\mathrm{2}}{\mathrm{4}{i}}\right)}×\frac{{e}^{{i}\mathrm{2}{x}} }{\mathrm{1}}×{x} \\ $$$$=\frac{\mathrm{1}}{−\mathrm{8}}×\frac{\mathrm{2}}{\mathrm{3}}×\frac{{cos}\mathrm{2}{x}+{isin}\mathrm{2}{x}}{\mathrm{1}}×{x} \\ $$$$=\frac{{x}}{−\mathrm{12}}\left({cos}\mathrm{2}{x}\right)+{i}×\frac{{x}}{−\mathrm{12}}\left({sin}\mathrm{2}{x}\right) \\ $$$$\boldsymbol{{P}}.{I}=\frac{{x}}{−\mathrm{12}}×{sin}\mathrm{2}{x}\rightarrow{y}=\frac{{xsin}\mathrm{2}{x}}{−\mathrm{12}} \\ $$$${pls}\:{check}\:{my}\:{answer} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *