Menu Close

find-pi-2-pi-2-cosx-cos-3-x-dx-




Question Number 53465 by maxmathsup by imad last updated on 22/Jan/19
find ∫_(−(π/2)) ^(π/2) (√(cosx −cos^3 x))dx
findπ2π2cosxcos3xdx
Commented by maxmathsup by imad last updated on 23/Jan/19
let I =∫_(−(π/2)) ^(π/2) (√(cosx −cos^3 ))dx ⇒I =∫_(−(π/2)) ^(π/2)  (√(cosx))(√(1−cos^2 x))dx  =∫_(−(π/2)) ^(π/2)  (√(cosx))∣sinx∣dx =2 ∫_0 ^(π/2)  (√(cosx))sinxdx  =−2 ∫_0 ^(π/2)   (cosx)^(1/2)   (d(cosx))dx  =−2 [(1/(1+(1/2))) cos^(1+(1/2)) x]_0 ^(π/2) =−2.(2/3)[cos^(3/2) x]_0 ^(π/2) =−(4/3)(−1) =(4/3)
letI=π2π2cosxcos3dxI=π2π2cosx1cos2xdx=π2π2cosxsinxdx=20π2cosxsinxdx=20π2(cosx)12(d(cosx))dx=2[11+12cos1+12x]0π2=2.23[cos32x]0π2=43(1)=43
Answered by ajfour last updated on 22/Jan/19
∫_(−π/2) ^(  π/2) (√(cos x))∣sin x∣dx  = −2∫_0 ^(  π/2) (√(cos x))(sin x)dx  = −2∫_1 ^(  0) (√t)dt = (4/3) .
π/2π/2cosxsinxdx=20π/2cosx(sinx)dx=210tdt=43.
Commented by malwaan last updated on 23/Jan/19
t=cosx  ⇒dt=−sinxdx  where is (−) ?
t=cosxdt=sinxdxwhereis()?

Leave a Reply

Your email address will not be published. Required fields are marked *