Menu Close

find-pi-3-pi-2-x-cosx-dx-




Question Number 55996 by maxmathsup by imad last updated on 07/Mar/19
find ∫_(π/3) ^(π/2)    (x/(cosx))dx
findπ3π2xcosxdx
Commented by maxmathsup by imad last updated on 09/Mar/19
let I =∫_(π/3) ^(π/2)   (x/(cosx))dx  changement  tan((x/2))=t  give   =∫_(1/( (√3))) ^1       ((2arctan(t))/((1−t^2 )/(1+t^2 ))) ((2dt)/(1+t^2 )) =4∫_(1/( (√3))) ^1    ((arctant)/(1−t^2 )) dt  but  ∫_(1/( (√3))) ^1   ((arctan(t))/(1−t^2 ))dt =(1/2)∫_(1/( (√3))) ^1  arctan(t){(1/(1−t)) +(1/(1+t))}dt  =(1/2) ∫_(1/( (√3))) ^1   ((arctan(t))/(1−t))dt +(1/2) ∫_(1/( (√3))) ^1   ((arctan(t))/(1+t))dt   let f(x) =∫_(1/( (√3))) ^1   ((arctan(xt))/(1−t)) dt ⇒  f^′ (x) = ∫_(1/( (√3))) ^1  (t/((1+x^2 t^2 )(1−t)))dt  =_(xt =u)     ∫_(x/( (√3))) ^x     (u/(x(1+u^2 )(1−(u/x)))) (du/x)  =(1/x) ∫_(x/( (√3))) ^x    (u/((u^2 +1)(x−u))) du  let decompose F(u) =(u/((x−u)(u^2  +1)))  F(u) =(a/(x−u)) +((bu +c)/(u^2  +1))  a =lim_(u→x) (x−u)F(u) =(x/(x^2  +1))  lim_(u→+∞) uF(u) =0 =−a +b ⇒b=a ⇒F(u) =(a/(x−u)) +((au +c)/(u^2  +1))  F(0) =0 =(a/x) +c ⇒c =−(a/x) =−(1/(x^2  +1)) ⇒  F(u) =(x/((x^2 +1)(x−u))) +(((x/(x^2  +1))u −(1/(x^2  +1)))/(u^2  +1))  =(x/(x^2  +1)){(1/(x−u)) +((u−x)/(u^2  +1))} ⇒ ∫ F(u)du =(x/(x^2  +1))ln∣x−u∣  +(x/(2(x^2  +1)))ln(u^2  +1)  −(x^2 /(x^2  +1)) arctan(u) +c ⇒  ∫_(x/( (√3))) ^x  F(u)du =(x/(x^2  +1))[ln∣x−u∣+(1/2)ln(u^2  +1)−x arctanu]_(x/( (√3))) ^x   ....be continued....
letI=π3π2xcosxdxchangementtan(x2)=tgive=1312arctan(t)1t21+t22dt1+t2=4131arctant1t2dtbut131arctan(t)1t2dt=12131arctan(t){11t+11+t}dt=12131arctan(t)1tdt+12131arctan(t)1+tdtletf(x)=131arctan(xt)1tdtf(x)=131t(1+x2t2)(1t)dt=xt=ux3xux(1+u2)(1ux)dux=1xx3xu(u2+1)(xu)duletdecomposeF(u)=u(xu)(u2+1)F(u)=axu+bu+cu2+1a=limux(xu)F(u)=xx2+1limu+uF(u)=0=a+bb=aF(u)=axu+au+cu2+1F(0)=0=ax+cc=ax=1x2+1F(u)=x(x2+1)(xu)+xx2+1u1x2+1u2+1=xx2+1{1xu+uxu2+1}F(u)du=xx2+1lnxu+x2(x2+1)ln(u2+1)x2x2+1arctan(u)+cx3xF(u)du=xx2+1[lnxu+12ln(u2+1)xarctanu]x3x.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *