find-pi-4-4-pi-1-1-x-2-arctanx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33328 by prof Abdo imad last updated on 14/Apr/18 find∫π44π(1+1x2)arctanxdx Commented by math khazana by abdo last updated on 19/Apr/18 letputI=∫π44π(1+1x2)arctanxdx.letintegratebypartsu′=1+1x2andv=arctanxI=[(1−1x)arctanx]π44π−∫π44π(1−1x)dx1+x2=(1−π4)arctan(4π)−(1−4π)−∫π44πdx1+x2+∫π44πdxx(1+x2)but∫π44πdx1+x2=arctan(4π)−arctan(π4)=π2−1−1=π2−2let?decomposeF(x)=1x(1+x2)=ax+bx+c1+x2a=limx→0xF(x)=1limx→+∞xF(x)=0=a+b⇒b=−a=−1F(x)=1x+−x+c1+x2welooktbatc=0⇒F(x)=1x−x1+x2⇒∫π44πdxx(1+x2)=∫π44π(1x−x1+x2)dx=[ln(x)−12ln(1+x2)]π44π=[ln(x1+x2)]π44π=ln(4π1+16π2)−ln(π41+π216)I=(1−π4)(π2−1)+1+4π−π2+ln(4π1+16π2)−ln(π41+π216). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-1-dx-3-e-x-Next Next post: Question-33330 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.