Menu Close

find-pi-4-4-pi-1-1-x-2-arctanx-dx-




Question Number 33328 by prof Abdo imad last updated on 14/Apr/18
find   ∫_(π/4) ^(4/π)   (1+(1/x^2 ))arctanx dx
findπ44π(1+1x2)arctanxdx
Commented by math khazana by abdo last updated on 19/Apr/18
let put I = ∫_(π/4) ^(4/π)   (1+(1/x^2 ))arctanx dx .let integrate by  parts u^′  =1+(1/x^2 )  and v =arctanx  I = [(1−(1/x))arctanx]_(π/4) ^(4/π)   −∫_(π/4) ^(4/π)  (1−(1/x)) (dx/(1+x^2 ))  = (1−(π/4))arctan((4/π)) −(1−(4/π)) −∫_(π/4) ^(4/π)   (dx/(1+x^2 ))  + ∫_(π/4) ^(4/π)       (dx/(x( 1+x^2 )))  but  ∫_(π/4) ^(4/π)    (dx/(1+x^2 )) = arctan( (4/π)) −arctan((π/4))  =(π/2) −1−1=(π/2) −2  let?decompose  F(x) =  (1/(x(1+x^2 ))) = (a/x)  +((bx +c)/(1+x^2 ))  a =lim_(x→0) x F(x) = 1  lim_(x→+∞) x F(x) =0 = a +b ⇒b=−a =−1  F(x) = (1/x)  +((−x +c)/(1+x^2 ))    we look tbat c=0 ⇒  F(x) = (1/x)  −(x/(1+x^2 )) ⇒  ∫_(π/4) ^(4/π)     (dx/(x(1+x^2 ))) = ∫_(π/4) ^(4/π)  ((1/x) −(x/(1+x^2 )))dx  =[ ln(x)−(1/2)ln(1+x^2 )]_(π/4) ^(4/π)  =[ln((x/( (√(1+x^2 )))))]_(π/4) ^(4/π)   = ln(  (4/(π(√(1+((16)/π^2 )))))) −ln(   (π/(4(√(1+(π^2 /(16)))))))  I =(1−(π/4))((π/2) −1) +1 +(4/π) −(π/2)   +ln( (4/(π(√(1+((16)/π^2 )))))) −ln(  (π/(4(√(1+(π^2 /(16))))))) .
letputI=π44π(1+1x2)arctanxdx.letintegratebypartsu=1+1x2andv=arctanxI=[(11x)arctanx]π44ππ44π(11x)dx1+x2=(1π4)arctan(4π)(14π)π44πdx1+x2+π44πdxx(1+x2)butπ44πdx1+x2=arctan(4π)arctan(π4)=π211=π22let?decomposeF(x)=1x(1+x2)=ax+bx+c1+x2a=limx0xF(x)=1limx+xF(x)=0=a+bb=a=1F(x)=1x+x+c1+x2welooktbatc=0F(x)=1xx1+x2π44πdxx(1+x2)=π44π(1xx1+x2)dx=[ln(x)12ln(1+x2)]π44π=[ln(x1+x2)]π44π=ln(4π1+16π2)ln(π41+π216)I=(1π4)(π21)+1+4ππ2+ln(4π1+16π2)ln(π41+π216).

Leave a Reply

Your email address will not be published. Required fields are marked *