Menu Close

find-pi-4-pi-4-xsinx-cos-2-x-dx-




Question Number 53462 by maxmathsup by imad last updated on 22/Jan/19
find ∫_(−(π/4)) ^(π/4)   ((xsinx)/(cos^2 x))dx
findπ4π4xsinxcos2xdx
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
∫xtanxsecxdx  x∫tanxsecxdx−∫[(dx/dx)∫tanxsecxdx]dx  xsecx−∫secxdx  xsecx−ln(secx+tanx)+c  so I=∣xsecx−ln(secx+tanx)∣_((−π)/4) ^(π/4)   =[{(π/4)×(√2) −ln((√2) +1)}−{((−π)/4)×(√2) −ln((√2) −1)}]  =[2×(π/4)×(√2) +ln((((√2) −1)/( (√2) +1)))]  =(π/( (√2)))+ln((((√2) −1)/( (√2) +1)))
xtanxsecxdxxtanxsecxdx[dxdxtanxsecxdx]dxxsecxsecxdxxsecxln(secx+tanx)+csoI=∣xsecxln(secx+tanx)π4π4=[{π4×2ln(2+1)}{π4×2ln(21)}]=[2×π4×2+ln(212+1)]=π2+ln(212+1)

Leave a Reply

Your email address will not be published. Required fields are marked *