Question Number 34282 by math khazana by abdo last updated on 03/May/18
$${find}\:\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\:\:\frac{{dx}}{{cos}\left({x}\right)\:{sin}\left({x}\right)} \\ $$
Commented by math khazana by abdo last updated on 07/May/18
$${I}\:\:=\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\mathrm{2}\:\:\:\:\frac{{dx}}{{sin}\left(\mathrm{2}{x}\right)}\:=\:\mathrm{2}\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\frac{{dx}}{{sin}\left(\mathrm{2}{x}\right)} \\ $$$$=\mathrm{2}\left[\:\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{tanx}\mid\right]_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\:={ln}\left({tan}\left(\frac{\pi}{\mathrm{3}}\right)\right)\:−{ln}\left({tan}\left(\frac{\pi}{\mathrm{6}}\right)\right) \\ $$$$=\:{ln}\left(\sqrt{\mathrm{3}}\:\right)\:−{ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\:=\:\mathrm{2}{ln}\left(\sqrt{\mathrm{3}}\right)\:=\:{ln}\left(\mathrm{3}\right). \\ $$