Menu Close

find-pi-pi-2dt-2-sint-cost-




Question Number 28882 by abdo imad last updated on 31/Jan/18
find ∫_(−π) ^π    ((2dt)/(2+sint +cost)) .
findππ2dt2+sint+cost.
Commented by abdo imad last updated on 02/Feb/18
let use the ch. e^(it) =z  I=  ∫_(∣z∣=1)          (2/(2 +((z−z^− )/(2i)) +((z+z^(−1) )/2))) (dz/(iz))  I= ∫_(∣z∣=1)                (1/(iz( 1+ ((z−z^(−1) )/(4i)) +((z+z^(−1) )/4))))dz  I= ∫_(∣z∣=1)                (dz/(z(i + ((z−z^(−1) )/4) +((i(z+z^(−1) ))/4))))  I= ∫_(∣z∣=1)        ((4dz)/(z(4i +z−z^(−1)  +iz +iz^(−1) )))  I= ∫_(∣z∣=1)        ((4dz)/(4iz +z^2 −1 +iz^2 +i))  = ∫_(∣z∣=1)       ((4dz)/((1+i)z^2  +4iz −1+i)) let introduce the complex  function w(z)=   (4/((1+i)z^2  +4iz−1+i))   poles of w?  Δ^′ =(2i)^2  −(1+i)(−1+i)=−4 −(−2) =−2 =(i(√2))^2   z_1 =((−2i +i(√2))/(1+i))   and z_2 =((−2i−i(√2))/(1+i))  ∣z_1 ∣= ((∣−2i +i(√2)∣)/(∣1+i∣)) =((2−(√2))/( (√2)))=(√2) −1 and ∣z_1 ∣−1=(√2)−2<0  so ∣z_1 ∣<1
letusethech.eit=zI=z∣=122+zz2i+z+z12dzizI=z∣=11iz(1+zz14i+z+z14)dzI=z∣=1dzz(i+zz14+i(z+z1)4)I=z∣=14dzz(4i+zz1+iz+iz1)I=z∣=14dz4iz+z21+iz2+i=z∣=14dz(1+i)z2+4iz1+iletintroducethecomplexfunctionw(z)=4(1+i)z2+4iz1+ipolesofw?Δ=(2i)2(1+i)(1+i)=4(2)=2=(i2)2z1=2i+i21+iandz2=2ii21+iz1∣=2i+i21+i=222=21andz11=22<0soz1∣<1
Commented by abdo imad last updated on 02/Feb/18
∣z_2 ∣= ((2+(√2))/( (√2))) =(√2)+1⇒∣z_2 ∣−1=(√2)>0( to eliminate frm residus)  ∫_(∣z∣=1) w(z)dz=2iπRes(w,z_1 ) but   w(z)=     (4/((1+i)(z−z_1 )(z−z_2 )))⇒  Res(w,z_1 )=  (4/((1+i)(z_1 −z_2 )))=   (4/((1+i)((2i(√2))/(1+i)))) = (2/(i(√2))) =((√2)/i)  ∫_(∣z∣=1) w(z)dz=2iπ.((√2)/i) = 2π(√2) .⇒  I=2π(√2) .
z2∣=2+22=2+1⇒∣z21=2>0(toeliminatefrmresidus)z∣=1w(z)dz=2iπRes(w,z1)butw(z)=4(1+i)(zz1)(zz2)Res(w,z1)=4(1+i)(z1z2)=4(1+i)2i21+i=2i2=2iz∣=1w(z)dz=2iπ.2i=2π2.I=2π2.

Leave a Reply

Your email address will not be published. Required fields are marked *