Menu Close

Find-positive-integers-a-and-b-such-that-a-1-3-b-1-3-1-2-49-20-6-1-3-




Question Number 151316 by iloveisrael last updated on 20/Aug/21
      Find positive integers        a and b such that        ((a)^(1/3)  +(b)^(1/3)  −1)^2 = 49+ 20(6)^(1/3)
$$\:\:\:\:\:\:{Find}\:{positive}\:{integers}\: \\ $$$$\:\:\:\:\:{a}\:{and}\:{b}\:{such}\:{that}\: \\ $$$$\:\:\:\:\:\left(\sqrt[{\mathrm{3}}]{{a}}\:+\sqrt[{\mathrm{3}}]{{b}}\:−\mathrm{1}\right)^{\mathrm{2}} =\:\mathrm{49}+\:\mathrm{20}\sqrt[{\mathrm{3}}]{\mathrm{6}}\: \\ $$
Answered by Rasheed.Sindhi last updated on 20/Aug/21
((a)^(1/3)  +(b)^(1/3)  −1)^2 ^(SOLVE  for a,b∈Z^+ ) = 49+ 20(6)^(1/3)    ((a)^(1/3)  +(b)^(1/3)  _(m) −1)^2 −49=20(6)^(1/3)    ⇒m is not rational  (m −1−7)(m −1+7)=20(6)^(1/3)   (m−8)(m +6)=1.2^2 .5.(2)^(1/3) .(3)^(1/3)   (Obviously, m −8<m+6)  perhaps no solution
$$\overset{\mathcal{SOLVE}\:\:{for}\:{a},{b}\in\mathbb{Z}^{+} } {\left(\sqrt[{\mathrm{3}}]{{a}}\:+\sqrt[{\mathrm{3}}]{{b}}\:−\mathrm{1}\right)^{\mathrm{2}} }=\:\mathrm{49}+\:\mathrm{20}\sqrt[{\mathrm{3}}]{\mathrm{6}}\: \\ $$$$\left(\underset{{m}} {\underbrace{\sqrt[{\mathrm{3}}]{{a}}\:+\sqrt[{\mathrm{3}}]{{b}}\:}}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{49}=\mathrm{20}\sqrt[{\mathrm{3}}]{\mathrm{6}}\: \\ $$$$\Rightarrow{m}\:{is}\:{not}\:{rational} \\ $$$$\left({m}\:−\mathrm{1}−\mathrm{7}\right)\left({m}\:−\mathrm{1}+\mathrm{7}\right)=\mathrm{20}\sqrt[{\mathrm{3}}]{\mathrm{6}} \\ $$$$\left({m}−\mathrm{8}\right)\left({m}\:+\mathrm{6}\right)=\mathrm{1}.\mathrm{2}^{\mathrm{2}} .\mathrm{5}.\sqrt[{\mathrm{3}}]{\mathrm{2}}.\sqrt[{\mathrm{3}}]{\mathrm{3}} \\ $$$$\left({Obviously},\:{m}\:−\mathrm{8}<{m}+\mathrm{6}\right) \\ $$$${perhaps}\:{no}\:{solution} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *