Menu Close

find-radius-and-sum-of-n-0-x-2n-2n-1-2-find-n-0-1-2n-1-9-n-




Question Number 29981 by abdo imad last updated on 14/Feb/18
find radius and sum of   Σ_(n=0) ^∞     (x^(2n) /(2n+1))  2) find   Σ_(n=0) ^∞      (1/((2n+1)9^n )) .
findradiusandsumofn=0x2n2n+12)findn=01(2n+1)9n.
Commented by abdo imad last updated on 15/Feb/18
let put  for ∣x∣<1S(x)= Σ_(n=0) ^∞  (x^(2n) /(2n+1))⇒x S(x)=Σ_(n=0) ^∞  (x^(2n+1) /(2n+1)) let derivate  S(x)+xS^′ (x)= Σ_(n=0) ^∞  x^(2n) = (1/(1−x^2 )) ⇒ S is solution of d.e  xy^′  +y = (1/(1−x^2 ))   h.e⇒ xy^′  +y =0 ⇒ (y^′ /y) =−(1/x) ⇒  ln∣y∣=−lnx +c ⇒y= (k/x)   let use m.v.c we have  y^′ =((k^′ x−k)/x^2 )   (e)⇒((k^′ x −k)/x) + (k/x)= (1/(1−x^2 ))⇒k^′ = (1/(1−x^2 ))  k(x)= ∫(dx/(1−x^2 )) +λ =(1/2)( ∫ (dx/(1−x)) +∫ (dx/(1+x))) +λ  =(1/2)ln∣((1+x)/(1−x))∣+λ ⇒S(x) = (1/(2x))ln∣((1+x)/(1−x))∣ +(λ/x)  λ=lim_(x→0) (xS(x)−(1/2)ln∣((1+x)/(1−x))∣) =0 ⇒  S(x)=(1/(2x))ln∣((1+x)/(1−x))∣  with  −1<x<1  .  we have (u_(n+1) /u_n )=((1/(2n+3))/(1/(2n+1)))= ((2n+1)/(2n+3_(n→+∞) )) →1 ⇒R=1  for x=1 or x=−1 the serie diverges.  2)Σ_(n=0) ^∞     (1/((2n+1)9^n ))=Σ_(n=0) ^∞    ((((1/3))^(2n) )/(2n+1)) =S((1/3))  = (3/2)ln∣((4/3)/(2/3))∣=(3/2)ln(2) .
letputforx∣<1S(x)=n=0x2n2n+1xS(x)=n=0x2n+12n+1letderivateS(x)+xS(x)=n=0x2n=11x2Sissolutionofd.exy+y=11x2h.exy+y=0yy=1xlny∣=lnx+cy=kxletusem.v.cwehavey=kxkx2(e)kxkx+kx=11x2k=11x2k(x)=dx1x2+λ=12(dx1x+dx1+x)+λ=12ln1+x1x+λS(x)=12xln1+x1x+λxλ=limx0(xS(x)12ln1+x1x)=0S(x)=12xln1+x1xwith1<x<1.wehaveun+1un=12n+312n+1=2n+12n+3n+1R=1forx=1orx=1theseriediverges.2)n=01(2n+1)9n=n=0(13)2n2n+1=S(13)=32ln4323∣=32ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *