Menu Close

find-radius-andsum-of-n-1-n-1-n-x-n-




Question Number 29983 by abdo imad last updated on 14/Feb/18
find radius andsum of  Σ_(n=1) ^∞   ((n−1)/(n!)) x^n .
findradiusandsumofn=1n1n!xn.
Commented by abdo imad last updated on 15/Feb/18
S(x)=Σ_(n=1) ^∞  ((n−1)/(n!))x^n  = Σ_(n=1) ^∞  u_n (x) and for x≠0  ∣((u_(n+1) (x))/(u_n (x)))∣= ∣  (((n/((n+1)!))x^(n+1) )/(((n−1)/(n!)) x^n ))∣=(n/((n+1)!)). ((n!)/(n−1)) ∣x∣=(n/((n+1)(n−1)))∣x_ ∣_(n→+∞) →0  so R=+∞  we have S(x)= Σ_(n=1) ^∞  (x^n /((n−1)!)) −Σ_(n=1) ^∞  (x^n /(n!)) but  Σ_(n=1) ^∞   (x^n /(n!)) =e^x −1 and   Σ_(n=1) ^∞   (x^n /((n−1)!)) = x Σ_(n=1) ^∞  (x^(n−1) /((n−1)!))  =x Σ_(n=0) ^∞   (x^n /(n!))=xe^x  ⇒S(x)= x e^x  −e^x +1=(x−1)e^x +1 .
S(x)=n=1n1n!xn=n=1un(x)andforx0un+1(x)un(x)∣=n(n+1)!xn+1n1n!xn∣=n(n+1)!.n!n1x∣=n(n+1)(n1)xn+0soR=+wehaveS(x)=n=1xn(n1)!n=1xnn!butn=1xnn!=ex1andn=1xn(n1)!=xn=1xn1(n1)!=xn=0xnn!=xexS(x)=xexex+1=(x1)ex+1.

Leave a Reply

Your email address will not be published. Required fields are marked *