Menu Close

find-radius-of-curvature-to-y-sin-x-at-x-pi-6-




Question Number 41682 by ajfour last updated on 11/Aug/18
find radius of curvature to  y=sin x  at  x=π/6 .
findradiusofcurvaturetoy=sinxatx=π/6.
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18
  ds=rdθ  ds=(√((dy)^2 +(dx)^2 ))   (ds/dx)=(√(1+((dy/dx))^2  ))  tanθ=(dy/dx)  θ=tan^(−1) ((dy/dx))  (dθ/dx)=((d^2 y/dx^2 )/(1+((dy/dx))^2 ))  r=(ds/dθ)=((ds/dx)/(dθ/dx))=∣(({1+((dy/dx))^2 }^(3/2) )/(d^2 y/dx^2 ))∣  y=sinx  (dy/dx)=cosx   so ((dy/dx))_(x=(Π/6))  =((√3)/2)  (d^2 y/dx^2 )=−sinx  so ((d^2 y/dx^2 ))_(x=(Π/6)) =−(1/2)  r=∣(({1+(3/4)}^(3/2) )/(−(1/2)))∣.=2.((7/4))^(3/2)
ds=rdθds=(dy)2+(dx)2dsdx=1+(dydx)2tanθ=dydxθ=tan1(dydx)dθdx=d2ydx21+(dydx)2r=dsdθ=dsdxdθdx=∣{1+(dydx)2}32d2ydx2y=sinxdydx=cosxso(dydx)x=Π6=32d2ydx2=sinxso(d2ydx2)x=Π6=12r=∣{1+34}3212.=2.(74)32
Commented by ajfour last updated on 11/Aug/18
thank you Tanmay Sir.
thankyouTanmaySir.
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18
thank you also for posting variety of problem   of different taste...
thankyoualsoforpostingvarietyofproblemofdifferenttaste
Answered by ajfour last updated on 11/Aug/18
[x−((π/6)+rsin θ)]^2 +[y−((1/2)+rcos θ)]^2 =r^2   2[x−((π/6)+rsin θ)]+2[y−((1/2)+rcos θ)](dy/dx)=0  1+((dy/dx))^2 +[y−(1/2)−rcos θ](d^2 y/dx^2 )=0                            ......(i)  and  ((d^2 (sin x))/dx^2 )∣_(x=(π/6))  = −(1/2)     (dy/dx)∣_(x=(π/6)) = ((√3)/2) = tan θ  using these in (i)  ⇒   1+(3/4)+((1/2)−(1/2)−((2r)/( (√7))))(−(1/2))=0  ⇒  ∣r∣ = ((7(√7))/4) .
[x(π6+rsinθ)]2+[y(12+rcosθ)]2=r22[x(π6+rsinθ)]+2[y(12+rcosθ)]dydx=01+(dydx)2+[y12rcosθ]d2ydx2=0(i)andd2(sinx)dx2x=π6=12dydxx=π6=32=tanθusingthesein(i)1+34+(12122r7)(12)=0r=774.

Leave a Reply

Your email address will not be published. Required fields are marked *