Menu Close

find-radius-of-S-x-n-1-x-n-n-2-and-calculate-its-sum-2-find-n-1-1-n-2-and-n-1-1-n-2-2-n-




Question Number 39517 by math khazana by abdo last updated on 07/Jul/18
find radius of  S(x)=Σ_(n=1) ^∞   (x^n /n^2 )  and calculate its sum  2) find Σ_(n=1) ^∞  (1/n^2 )   and  Σ_(n=1) ^∞    (1/(n^2  2^n )) .
findradiusofS(x)=n=1xnn2andcalculateitssum2)findn=11n2andn=11n22n.
Commented by abdo mathsup 649 cc last updated on 07/Jul/18
for x≠0  ∣ ((u_(n+1) (x))/(u_n (x)))∣ =∣ ((x^(n+1) /((n+1)^2 ))/(x^n /n^2 ))∣=(n^2 /((n+1)^2 )) ∣x∣→∣x∣  so if ∣x∣<1  the serie converges  if x=−1  Σ (((−1)^n )/n^2 ) converges(alternate serie)  if x=1  Σ (1/n^2 )  is a reiman serie convergent  and R=1  we have  (dS/dx)(x)= Σ_(n=1) ^∞  ((nx^(n−1) )/n^2 ) =(1/x)Σ_(n=1) ^∞  (x^n /n)  =−((ln(1−x))/x)  (  we suppose that x≠0) ⇒  S(x) = −∫_0 ^x   ((ln(1−t))/t) dt +c  c=S(0)=0 ⇒ S(x)=−∫_0 ^x  ((ln(1−t))/t) dt .
forx0un+1(x)un(x)=∣xn+1(n+1)2xnn2∣=n2(n+1)2x∣→∣xsoifx∣<1theserieconvergesifx=1Σ(1)nn2converges(alternateserie)ifx=1Σ1n2isareimanserieconvergentandR=1wehavedSdx(x)=n=1nxn1n2=1xn=1xnn=ln(1x)x(wesupposethatx0)S(x)=0xln(1t)tdt+cc=S(0)=0S(x)=0xln(1t)tdt.
Commented by abdo mathsup 649 cc last updated on 07/Jul/18
2) Σ_(n=1) ^∞   (1/n^2 ) =S(1)  = −∫_0 ^1  ((ln(1−t))/t)  dt   and we have always proved that  Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /6) .
2)n=11n2=S(1)=01ln(1t)tdtandwehavealwaysprovedthatn=11n2=π26.

Leave a Reply

Your email address will not be published. Required fields are marked *