Menu Close

Find-range-of-y-x-x-1-x-2-




Question Number 34821 by ajfour last updated on 11/May/18
Find range of     y=(x/((x−1)(x−2))) .
$${Find}\:{range}\:{of} \\ $$$$\:\:\:{y}=\frac{{x}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)}\:. \\ $$
Commented by ajfour last updated on 11/May/18
Answered by ajfour last updated on 11/May/18
(dy/dx)=((x^2 −3x+2−x(2x−3))/((x−1)^2 (x−2)^2 ))  (dy/dx)=0  ⇒   x^2 =2   ⇒   x=±(√2)  y∣_(x=−(√2))  =b=((−(√2))/((−(√2)−1)(−(√2)−2)))       ⇒    b=−(1/(((√2)+1)^2 )) = −(1/((3+2(√2))))          =−(3−2(√2))  y∣_(x=(√2))  =a =((√2)/(((√2)−1)((√2)−2)))                ⇒   a=−(1/(((√2)−1)^2 ))               a=−(1/(3−2(√2))) = −(3+2(√2))  So,  y∈ (−∞, −3−2(√2)] ∪ [2(√2)−3,∞) .
$$\frac{{dy}}{{dx}}=\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}−{x}\left(\mathrm{2}{x}−\mathrm{3}\right)}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\frac{{dy}}{{dx}}=\mathrm{0}\:\:\Rightarrow\:\:\:{x}^{\mathrm{2}} =\mathrm{2}\:\:\:\Rightarrow\:\:\:{x}=\pm\sqrt{\mathrm{2}} \\ $$$${y}\mid_{{x}=−\sqrt{\mathrm{2}}} \:={b}=\frac{−\sqrt{\mathrm{2}}}{\left(−\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(−\sqrt{\mathrm{2}}−\mathrm{2}\right)} \\ $$$$\:\:\:\:\:\Rightarrow\:\:\:\:{b}=−\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:−\frac{\mathrm{1}}{\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right)} \\ $$$$\:\:\:\:\:\:\:\:=−\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$$${y}\mid_{{x}=\sqrt{\mathrm{2}}} \:={a}\:=\frac{\sqrt{\mathrm{2}}}{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}}−\mathrm{2}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:{a}=−\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{a}=−\frac{\mathrm{1}}{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}\:=\:−\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$$${So}, \\ $$$${y}\in\:\left(−\infty,\:−\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right]\:\cup\:\left[\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3},\infty\right)\:. \\ $$
Commented by NECx last updated on 12/May/18
wow.... This style is new to me.  Thanks
$${wow}….\:{This}\:{style}\:{is}\:{new}\:{to}\:{me}. \\ $$$${Thanks} \\ $$
Answered by Joel579 last updated on 11/May/18
y(x^2  − 3x + 2) = x  yx^2  − 3yx − x + 2y = 0  yx^2  − (3y + 1)x + 2y = 0  x = (((3y + 1) ± (√((3y + 1)^2  − 4y(2y))))/(2y))      = (((3y + 1) ± (√(y^2  + 6y + 1)))/(2y))  y ≠ 0  y^2  + 6y + 1 ≥ 0  y ≤ −3 − 2(√2)   ∨  y ≥ −3 + 2(√2)
$${y}\left({x}^{\mathrm{2}} \:−\:\mathrm{3}{x}\:+\:\mathrm{2}\right)\:=\:{x} \\ $$$${yx}^{\mathrm{2}} \:−\:\mathrm{3}{yx}\:−\:{x}\:+\:\mathrm{2}{y}\:=\:\mathrm{0} \\ $$$${yx}^{\mathrm{2}} \:−\:\left(\mathrm{3}{y}\:+\:\mathrm{1}\right){x}\:+\:\mathrm{2}{y}\:=\:\mathrm{0} \\ $$$${x}\:=\:\frac{\left(\mathrm{3}{y}\:+\:\mathrm{1}\right)\:\pm\:\sqrt{\left(\mathrm{3}{y}\:+\:\mathrm{1}\right)^{\mathrm{2}} \:−\:\mathrm{4}{y}\left(\mathrm{2}{y}\right)}}{\mathrm{2}{y}} \\ $$$$\:\:\:\:=\:\frac{\left(\mathrm{3}{y}\:+\:\mathrm{1}\right)\:\pm\:\sqrt{{y}^{\mathrm{2}} \:+\:\mathrm{6}{y}\:+\:\mathrm{1}}}{\mathrm{2}{y}} \\ $$$${y}\:\neq\:\mathrm{0} \\ $$$${y}^{\mathrm{2}} \:+\:\mathrm{6}{y}\:+\:\mathrm{1}\:\geqslant\:\mathrm{0} \\ $$$${y}\:\leqslant\:−\mathrm{3}\:−\:\mathrm{2}\sqrt{\mathrm{2}}\:\:\:\vee\:\:{y}\:\geqslant\:−\mathrm{3}\:+\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *