Menu Close

find-relation-between-f-x-dx-and-f-1-x-dx-




Question Number 125500 by mathmax by abdo last updated on 11/Dec/20
find relation between ∫ f(x)dx and ∫ f^(−1) (x)dx
$$\mathrm{find}\:\mathrm{relation}\:\mathrm{between}\:\int\:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\:\mathrm{and}\:\int\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\mathrm{dx}\:\: \\ $$
Answered by mathmax by abdo last updated on 11/Dec/20
let [a,b]⊂R^−    we considere I=∫_a ^b  f^(−1) (x)dx  we do the changement  f^(−1) (x)=t ⇒x=f(t)⇒I =∫_(f^(−1) (a)) ^(f^(−1) (b)) t f^′ (t)dt =_(by parts)   [tf(t)]_(f^(−1) (a)) ^(f^(−1) (b)) −∫_(f^(−1) (a)) ^(f^(−1) (b)) f(t)dt =bf^(−1) (b)−af^(−1) (a)−∫_(f^(−1) (a)) ^(f^(−1) (b)) f(t)dt ⇒  ∫_a ^b  f^(−1) (x) =bf^(−1) (b)−af^(−1) (a)−∫_(f^(−1) (a)) ^(f^(−1) (b)) f(x)dx
$$\mathrm{let}\:\left[\mathrm{a},\mathrm{b}\right]\subset\overset{−} {\mathrm{R}}\:\:\:\mathrm{we}\:\mathrm{considere}\:\mathrm{I}=\int_{\mathrm{a}} ^{\mathrm{b}} \:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement} \\ $$$$\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{t}\:\Rightarrow\mathrm{x}=\mathrm{f}\left(\mathrm{t}\right)\Rightarrow\mathrm{I}\:=\int_{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{a}\right)} ^{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{b}\right)} \mathrm{t}\:\mathrm{f}^{'} \left(\mathrm{t}\right)\mathrm{dt}\:=_{\mathrm{by}\:\mathrm{parts}} \\ $$$$\left[\mathrm{tf}\left(\mathrm{t}\right)\right]_{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{a}\right)} ^{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{b}\right)} −\int_{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{a}\right)} ^{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{b}\right)} \mathrm{f}\left(\mathrm{t}\right)\mathrm{dt}\:=\mathrm{bf}^{−\mathrm{1}} \left(\mathrm{b}\right)−\mathrm{af}^{−\mathrm{1}} \left(\mathrm{a}\right)−\int_{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{a}\right)} ^{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{b}\right)} \mathrm{f}\left(\mathrm{t}\right)\mathrm{dt}\:\Rightarrow \\ $$$$\int_{\mathrm{a}} ^{\mathrm{b}} \:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\:=\mathrm{bf}^{−\mathrm{1}} \left(\mathrm{b}\right)−\mathrm{af}^{−\mathrm{1}} \left(\mathrm{a}\right)−\int_{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{a}\right)} ^{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{b}\right)} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *