Menu Close

Find-roots-of-f-x-x-4-10x-3-35x-2-50x-24-




Question Number 39783 by ajfour last updated on 10/Jul/18
Find roots of  f(x)=x^4 −10x^3 +35x^2 −50x+24
$${Find}\:{roots}\:{of} \\ $$$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{10}{x}^{\mathrm{3}} +\mathrm{35}{x}^{\mathrm{2}} −\mathrm{50}{x}+\mathrm{24} \\ $$
Answered by ajfour last updated on 10/Jul/18
let f(x)=(x^2 −5x+A)^2 −(Bx+C)^2    = (x^2 −5x+A−Bx−C)(x^2 −5x+Bx+C)  if we set x=0  ⇒   A^2 −C^( 2)  = 24 = 5^2 −1^2   let    A = 5  ; C=1  if we set x=5  then     (A−5B−C)(A+5B+C)=    625−1250+875−250+24 =24  ⇒  A^2 −(5B+C)^2  = 24  or    (5B+1)^2 = 1  ⇒  B = 0  hence   f(x) = (x^2 −5x+4)(x^2 −5x+6)            = (x−1)(x−4)(x−2)(x−3).
$${let}\:{f}\left({x}\right)=\left({x}^{\mathrm{2}} −\mathrm{5}{x}+{A}\right)^{\mathrm{2}} −\left({Bx}+{C}\right)^{\mathrm{2}} \\ $$$$\:=\:\left({x}^{\mathrm{2}} −\mathrm{5}{x}+{A}−{Bx}−{C}\right)\left({x}^{\mathrm{2}} −\mathrm{5}{x}+{Bx}+{C}\right) \\ $$$${if}\:{we}\:{set}\:{x}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{A}^{\mathrm{2}} −{C}^{\:\mathrm{2}} \:=\:\mathrm{24}\:=\:\mathrm{5}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} \\ $$$${let}\:\:\:\:{A}\:=\:\mathrm{5}\:\:;\:{C}=\mathrm{1} \\ $$$${if}\:{we}\:{set}\:{x}=\mathrm{5}\:\:{then} \\ $$$$\:\:\:\left({A}−\mathrm{5}{B}−{C}\right)\left({A}+\mathrm{5}{B}+{C}\right)= \\ $$$$\:\:\mathrm{625}−\mathrm{1250}+\mathrm{875}−\mathrm{250}+\mathrm{24}\:=\mathrm{24} \\ $$$$\Rightarrow\:\:{A}^{\mathrm{2}} −\left(\mathrm{5}{B}+{C}\right)^{\mathrm{2}} \:=\:\mathrm{24} \\ $$$${or}\:\:\:\:\left(\mathrm{5}{B}+\mathrm{1}\right)^{\mathrm{2}} =\:\mathrm{1} \\ $$$$\Rightarrow\:\:{B}\:=\:\mathrm{0} \\ $$$${hence}\: \\ $$$${f}\left({x}\right)\:=\:\left({x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{4}\right)\left({x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\left({x}−\mathrm{1}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *