find-S-n-k-0-n-k-2-C-n-k-cos-2kx-interms-of-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 56962 by turbo msup by abdo last updated on 27/Mar/19 findSn=∑k=0nk2Cnkcos(2kx)intermsofn. Commented by maxmathsup by imad last updated on 29/Mar/19 wehaveSn=Re(∑k=0nk2Cnkei2kx)=Re(Wn)letp(x)=∑k=0nCnkei2kx=∑k=0nCnk(ei2x)k=(1+ei2x)nbutp′(x)=2i∑k=0nkCnkei2kxandp″(x)=−4∑k=0nk2Cnkei2kx⇒∑k=0nk2Cnkei2kx=−14p(2)(x)wehavep(x)=(ei2x+1)n⇒p′(x)=2in(ei2x+1)n−1andp(2)(x)=−4n(n−1)(ei2x+1)n−2but(ei2x+1)n−2=(cos(2x)+isin(2x)+1)n−2=(2cos2(x)+2isinxcosx)n−2=(2cosx)n−2(eix)n−2=(2cosx)n−2ei(n−2)x=(2cosx)n−2{cos(n−2)x+isin(n−2)x}⇒∑k=0nk2Cnkei2kx=−14(−4n(n−1))(2cosx)n−2{cos(n−2)x+isin(n−2)x}=n(n−1)2n−2cosn−2x{cos(n−2)x+isin(n−2)x}⇒Sn=n(n−1)2n−2cosn−2(x)cos((n−2)x). Answered by Smail last updated on 27/Mar/19 Sn(x)=∑nk=0k2Cnkcos(2kx)=Re(∑nk=0k2nCke2ikx)z″(x)=∑nk=0k2nCke2ikxz′(x)=12i∑nk=0knCke2ikx+cz(x)=−14∑nk=0nCke2ikx+cx+a=−14(1+e2ix)n+cx+az′(x)=12i×ne2ix(1+e2ix)n−1+cz″(x)=n(e2ix(1+e2ix)n−1+(n−1)e4ix(1+e2ix)n−2)=ne2ix(1+e2ix)n−2(1+e2ix+(n−1)e2ix)=ne2ix(1+e2ix)n−2(1+ne2ix)=ne2ix(1+cos(2x)+isin(2x))n−2(1+ne2ix)=ne2ix(2cos2x+2isinxcosx)n−2(1+ne2ix)=ne2ix2n−2cosn−2(x)(eix)n−2(1+ne2ix)=2n−2ncosn−2(x)einx(1+ne2ix)=2n−2ncosn−2x(einx+nei(n+2)x)=2n−2ncosn−2x(cosnx+isin(nx)+ncos((n+2)x)+isin((n+2)x))Sn=2n−2ncosn−2x(cosnx+ncos(n+2)x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-x-2-a-bx-2-dx-Next Next post: 2-x-e-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.