Menu Close

find-S-n-k-0-n-k-2-C-n-k-cos-2kx-interms-of-n-




Question Number 56962 by turbo msup by abdo last updated on 27/Mar/19
find S_n =Σ_(k=0) ^n  k^2  C_n ^k  cos(2kx)  interms of n.
findSn=k=0nk2Cnkcos(2kx)intermsofn.
Commented by maxmathsup by imad last updated on 29/Mar/19
we have S_n =Re( Σ_(k=0) ^n  k^2 C_n ^k  e^(i2kx) )=Re(W_n )  let p(x)=Σ_(k=0) ^n  C_n ^k  e^(i2kx)  =Σ_(k=0) ^n  C_n ^k  (e^(i2x) )^k  =(1+e^(i2x) )^n    but p^′ (x)=2i Σ_(k=0) ^n k C_n ^k  e^(i2kx)   and  p^(′′) (x)=−4 Σ_(k=0) ^n  k^2  C_n ^k  e^(i2kx)  ⇒  Σ_(k=0) ^n  k^2  C_n ^k  e^(i2kx)  =−(1/4)p^((2)) (x)  we have p(x)=(e^(i2x)  +1)^n  ⇒  p^′ (x)=2in(e^(i2x)  +1)^(n−1)  and p^((2)) (x)=−4n(n−1)(e^(i2x)  +1)^(n−2)   but (e^(i2x)  +1)^(n−2)  =(cos(2x)+isin(2x)+1)^(n−2)   =(2cos^2 (x)+2isinx cosx)^(n−2) =(2cosx)^(n−2) (e^(ix) )^(n−2)  =(2cosx)^(n−2)  e^(i(n−2)x)    =(2cosx)^(n−2) {cos(n−2)x +isin(n−2)x} ⇒  Σ_(k=0) ^n  k^2  C_n ^k  e^(i2kx)  =−(1/4)(−4n(n−1)) (2cosx)^(n−2) {cos(n−2)x +isin(n−2)x}  =n(n−1)2^(n−2)  cos^(n−2) x{cos(n−2)x +isin(n−2)x} ⇒  S_n =n(n−1)2^(n−2)  cos^(n−2) (x) cos((n−2)x) .
wehaveSn=Re(k=0nk2Cnkei2kx)=Re(Wn)letp(x)=k=0nCnkei2kx=k=0nCnk(ei2x)k=(1+ei2x)nbutp(x)=2ik=0nkCnkei2kxandp(x)=4k=0nk2Cnkei2kxk=0nk2Cnkei2kx=14p(2)(x)wehavep(x)=(ei2x+1)np(x)=2in(ei2x+1)n1andp(2)(x)=4n(n1)(ei2x+1)n2but(ei2x+1)n2=(cos(2x)+isin(2x)+1)n2=(2cos2(x)+2isinxcosx)n2=(2cosx)n2(eix)n2=(2cosx)n2ei(n2)x=(2cosx)n2{cos(n2)x+isin(n2)x}k=0nk2Cnkei2kx=14(4n(n1))(2cosx)n2{cos(n2)x+isin(n2)x}=n(n1)2n2cosn2x{cos(n2)x+isin(n2)x}Sn=n(n1)2n2cosn2(x)cos((n2)x).
Answered by Smail last updated on 27/Mar/19
S_n (x)=Σ_(k=0) ^n k^2 C_n ^k cos(2kx)=Re(Σ_(k=0) ^n k^2 ^n C_k e^(2ikx) )  z′′(x)=Σ_(k=0) ^n k^2 ^n C_k e^(2ikx)   z′(x)=(1/(2i))Σ_(k=0) ^n k^n C_k e^(2ikx) +c  z(x)=−(1/4)Σ_(k=0) ^n ^n C_k e^(2ikx) +cx+a  =((−1)/4)(1+e^(2ix) )^n +cx+a  z′(x)=(1/(2i))×ne^(2ix) (1+e^(2ix) )^(n−1) +c  z′′(x)=n(e^(2ix) (1+e^(2ix) )^(n−1) +(n−1)e^(4ix) (1+e^(2ix) )^(n−2) )  =ne^(2ix) (1+e^(2ix) )^(n−2) (1+e^(2ix) +(n−1)e^(2ix) )  =ne^(2ix) (1+e^(2ix) )^(n−2) (1+ne^(2ix) )  =ne^(2ix) (1+cos(2x)+isin(2x))^(n−2) (1+ne^(2ix) )  =ne^(2ix) (2cos^2 x+2isinxcosx)^(n−2) (1+ne^(2ix) )  =ne^(2ix) 2^(n−2) cos^(n−2) (x)(e^(ix) )^(n−2) (1+ne^(2ix) )  =2^(n−2) ncos^(n−2) (x)e^(inx) (1+ne^(2ix) )  =2^(n−2) ncos^(n−2) x(e^(inx) +ne^(i(n+2)x) )  =2^(n−2) ncos^(n−2) x(cosnx+isin(nx)+ncos((n+2)x)+isin((n+2)x))  S_n =2^(n−2) ncos^(n−2) x(cosnx+ncos(n+2)x)
Sn(x)=nk=0k2Cnkcos(2kx)=Re(nk=0k2nCke2ikx)z(x)=nk=0k2nCke2ikxz(x)=12ink=0knCke2ikx+cz(x)=14nk=0nCke2ikx+cx+a=14(1+e2ix)n+cx+az(x)=12i×ne2ix(1+e2ix)n1+cz(x)=n(e2ix(1+e2ix)n1+(n1)e4ix(1+e2ix)n2)=ne2ix(1+e2ix)n2(1+e2ix+(n1)e2ix)=ne2ix(1+e2ix)n2(1+ne2ix)=ne2ix(1+cos(2x)+isin(2x))n2(1+ne2ix)=ne2ix(2cos2x+2isinxcosx)n2(1+ne2ix)=ne2ix2n2cosn2(x)(eix)n2(1+ne2ix)=2n2ncosn2(x)einx(1+ne2ix)=2n2ncosn2x(einx+nei(n+2)x)=2n2ncosn2x(cosnx+isin(nx)+ncos((n+2)x)+isin((n+2)x))Sn=2n2ncosn2x(cosnx+ncos(n+2)x)

Leave a Reply

Your email address will not be published. Required fields are marked *