Menu Close

Find-shortest-distance-from-origin-to-the-cubic-y-x-3-10x-2-27x-18-




Question Number 54983 by ajfour last updated on 15/Feb/19
Find shortest distance from origin  to the cubic   y=x^3 βˆ’10x^2 +27xβˆ’18.
$${Find}\:{shortest}\:{distance}\:{from}\:{origin} \\ $$$${to}\:{the}\:{cubic}\:\:\:{y}={x}^{\mathrm{3}} βˆ’\mathrm{10}{x}^{\mathrm{2}} +\mathrm{27}{x}βˆ’\mathrm{18}. \\ $$
Commented by mr W last updated on 15/Feb/19
you can apply your solution method for  quintic equations to solve this question.
$${you}\:{can}\:{apply}\:{your}\:{solution}\:{method}\:{for} \\ $$$${quintic}\:{equations}\:{to}\:{solve}\:{this}\:{question}.\: \\ $$
Commented by ajfour last updated on 15/Feb/19
it was not general sir, i had  compared coefficients of two  quadratic equations in f.   y=(x^2 +𝛂x+f)(x^3 +Rx^2 +px+q).
$${it}\:{was}\:{not}\:{general}\:{sir},\:{i}\:{had} \\ $$$${compared}\:{coefficients}\:{of}\:{two} \\ $$$${quadratic}\:{equations}\:{in}\:\boldsymbol{{f}}. \\ $$$$\:\boldsymbol{{y}}=\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{\alpha{x}}+\boldsymbol{{f}}\right)\left(\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{Rx}}^{\mathrm{2}} +\boldsymbol{{px}}+\boldsymbol{{q}}\right). \\ $$
Answered by mr W last updated on 16/Feb/19
Commented by mr W last updated on 16/Feb/19
curve y=f(x)  P(x,y)  OP is normal of the curve:  (y/x)=βˆ’(1/(yβ€²))  β‡’yyβ€²+x=0  with y=x^3 βˆ’10x^2 +27xβˆ’18  yβ€²=3x^2 βˆ’20x+27  β‡’(x^3 βˆ’10x^2 +27xβˆ’18)(3x^2 βˆ’20x+27)+x=0  β‡’3x^5 βˆ’50x^4 +308x^3 βˆ’864x^2 +1090xβˆ’486=0  β‡’x_(min) β‰ˆ0.990296  β‡’yβ‰ˆβˆ’0.0977  β‡’OP_(min) =d_(min) β‰ˆ0.9905
$${curve}\:{y}={f}\left({x}\right) \\ $$$${P}\left({x},{y}\right) \\ $$$${OP}\:{is}\:{normal}\:{of}\:{the}\:{curve}: \\ $$$$\frac{{y}}{{x}}=βˆ’\frac{\mathrm{1}}{{y}'} \\ $$$$\Rightarrow\boldsymbol{{yy}}'+\boldsymbol{{x}}=\mathrm{0} \\ $$$${with}\:{y}={x}^{\mathrm{3}} βˆ’\mathrm{10}{x}^{\mathrm{2}} +\mathrm{27}{x}βˆ’\mathrm{18} \\ $$$${y}'=\mathrm{3}{x}^{\mathrm{2}} βˆ’\mathrm{20}{x}+\mathrm{27} \\ $$$$\Rightarrow\left({x}^{\mathrm{3}} βˆ’\mathrm{10}{x}^{\mathrm{2}} +\mathrm{27}{x}βˆ’\mathrm{18}\right)\left(\mathrm{3}{x}^{\mathrm{2}} βˆ’\mathrm{20}{x}+\mathrm{27}\right)+{x}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}{x}^{\mathrm{5}} βˆ’\mathrm{50}{x}^{\mathrm{4}} +\mathrm{308}{x}^{\mathrm{3}} βˆ’\mathrm{864}{x}^{\mathrm{2}} +\mathrm{1090}{x}βˆ’\mathrm{486}=\mathrm{0} \\ $$$$\Rightarrow{x}_{{min}} \approx\mathrm{0}.\mathrm{990296} \\ $$$$\Rightarrow{y}\approxβˆ’\mathrm{0}.\mathrm{0977} \\ $$$$\Rightarrow{OP}_{{min}} ={d}_{{min}} \approx\mathrm{0}.\mathrm{9905} \\ $$
Commented by mr W last updated on 16/Feb/19
Commented by mr W last updated on 16/Feb/19
is there a way without solving the  quintic equation?
$${is}\:{there}\:{a}\:{way}\:{without}\:{solving}\:{the} \\ $$$${quintic}\:{equation}? \\ $$
Commented by mr W last updated on 16/Feb/19
D=d^2 =x^2 +y^2   (dD/dx)=2x+2yyβ€²=0  β‡’x+yyβ€²=0β‡’this leads to quintic eqn.
$${D}={d}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\frac{{dD}}{{dx}}=\mathrm{2}{x}+\mathrm{2}{yy}'=\mathrm{0} \\ $$$$\Rightarrow\boldsymbol{{x}}+\boldsymbol{{yy}}'=\mathrm{0}\Rightarrow{this}\:{leads}\:{to}\:{quintic}\:{eqn}. \\ $$
Commented by MJS last updated on 16/Feb/19
no Sir.  we can also go this way:  (d/dx)[f(x)^2 +x^2 ]=0  which also leads to a quintic with at least  no easy exact solution
$$\mathrm{no}\:\mathrm{Sir}. \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{also}\:\mathrm{go}\:\mathrm{this}\:\mathrm{way}: \\ $$$$\frac{{d}}{{dx}}\left[{f}\left({x}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\mathrm{which}\:\mathrm{also}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{quintic}\:\mathrm{with}\:\mathrm{at}\:\mathrm{least} \\ $$$$\mathrm{no}\:\mathrm{easy}\:\mathrm{exact}\:\mathrm{solution} \\ $$
Commented by ajfour last updated on 16/Feb/19
Beautiful demonstration Sir,  thanks a lot. i think whatsoever  we do itβ€²ll land on solving a degree 5.
$${Beautiful}\:{demonstration}\:{Sir}, \\ $$$${thanks}\:{a}\:{lot}.\:{i}\:{think}\:{whatsoever} \\ $$$${we}\:{do}\:{it}'{ll}\:{land}\:{on}\:{solving}\:{a}\:{degree}\:\mathrm{5}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *