Menu Close

Find-sin-2-x-cos-x-dx-




Question Number 159568 by HongKing last updated on 18/Nov/21
Find:  𝛀 = ∫ sin^2 (x) ∙ cos(x) dx
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\:\int\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:\centerdot\:\mathrm{cos}\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$
Commented by HongKing last updated on 18/Nov/21
Sorry this example came by mistake
$$\mathrm{Sorry}\:\mathrm{this}\:\mathrm{example}\:\mathrm{came}\:\mathrm{by}\:\mathrm{mistake} \\ $$
Answered by puissant last updated on 18/Nov/21
Ω=∫cos(x)sin^2 (x)dx = (1/3)sin^3 (x)+C
$$\Omega=\int{cos}\left({x}\right){sin}^{\mathrm{2}} \left({x}\right){dx}\:=\:\frac{\mathrm{1}}{\mathrm{3}}{sin}^{\mathrm{3}} \left({x}\right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *