Question Number 163730 by HongKing last updated on 09/Jan/22
$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\:\int\:\frac{\mathrm{sin}\left(\mathrm{x}\right)\:+\:\sqrt{\mathrm{3}}\:\mathrm{cos}\left(\mathrm{x}\right)}{\mathrm{sin}\left(\mathrm{3x}\right)}\:\mathrm{dx} \\ $$
Answered by cortano1 last updated on 10/Jan/22
$$\:=\mathrm{2}\int\:\frac{\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\mathrm{3}{x}\right)}\:{dx} \\ $$$$\:=\:\mathrm{2}\int\:\frac{{d}\left(\mathrm{tan}\:\theta\right)}{\mathrm{3}β\mathrm{tan}\:^{\mathrm{2}} \theta}\:;\:\theta={x}+\frac{\pi}{\mathrm{6}} \\ $$$$\:=\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\mathrm{tanh}\:^{β\mathrm{1}} \left(\frac{\mathrm{tan}\:\theta}{\:\sqrt{\mathrm{3}}}\right)\:+\:{c} \\ $$$$\:=\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\mathrm{tanh}\:^{β\mathrm{1}} \left(\frac{\mathrm{tan}\:\left({x}+\frac{\pi}{\mathrm{6}}\right)}{\:\sqrt{\mathrm{3}}}\right)\:+\:{c}\: \\ $$
Answered by MJS_new last updated on 10/Jan/22
$$\int\frac{\mathrm{sin}\:{x}\:+\sqrt{\mathrm{3}}\mathrm{cos}\:{x}}{\mathrm{sin}\:\mathrm{3}{x}}{dx}= \\ $$$$=β\int\frac{\left(\sqrt{\mathrm{3}}+\mathrm{tan}\:{x}\right)\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}\right)}{\left(\mathrm{3}β\mathrm{tan}\:{x}\right)\mathrm{tan}\:{x}}{dx}= \\ $$$$=\int\frac{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}{\left(\sqrt{\mathrm{3}}β\mathrm{tan}\:{x}\right)\mathrm{tan}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}\right] \\ $$$$=\int\frac{{dt}}{{t}\left(\sqrt{\mathrm{3}}β{t}\right)}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{ln}\:\mid\frac{{t}}{{t}β\sqrt{\mathrm{3}}}\mid\:= \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{ln}\:\mid\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}\:β\sqrt{\mathrm{3}}\mathrm{cos}\:{x}}\mid\:+{C} \\ $$
Commented by peter frank last updated on 11/Jan/22
$$\mathrm{great} \\ $$