Menu Close

Find-sin-x-3-cos-x-sin-3x-dx-




Question Number 163730 by HongKing last updated on 09/Jan/22
Find:  𝛀 = ∫ ((sin(x) + (√3) cos(x))/(sin(3x))) dx
$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\:\int\:\frac{\mathrm{sin}\left(\mathrm{x}\right)\:+\:\sqrt{\mathrm{3}}\:\mathrm{cos}\left(\mathrm{x}\right)}{\mathrm{sin}\left(\mathrm{3x}\right)}\:\mathrm{dx} \\ $$
Answered by cortano1 last updated on 10/Jan/22
 =2∫ ((sin (x+(Ο€/3)))/(sin (3x))) dx   = 2∫ ((d(tan ΞΈ))/(3βˆ’tan^2 ΞΈ)) ; ΞΈ=x+(Ο€/6)   = ((2(√3))/3) tanh^(βˆ’1) (((tan ΞΈ)/( (√3)))) + c   = ((2(√3))/3) tanh^(βˆ’1) (((tan (x+(Ο€/6)))/( (√3)))) + c
$$\:=\mathrm{2}\int\:\frac{\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\mathrm{3}{x}\right)}\:{dx} \\ $$$$\:=\:\mathrm{2}\int\:\frac{{d}\left(\mathrm{tan}\:\theta\right)}{\mathrm{3}βˆ’\mathrm{tan}\:^{\mathrm{2}} \theta}\:;\:\theta={x}+\frac{\pi}{\mathrm{6}} \\ $$$$\:=\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\mathrm{tanh}\:^{βˆ’\mathrm{1}} \left(\frac{\mathrm{tan}\:\theta}{\:\sqrt{\mathrm{3}}}\right)\:+\:{c} \\ $$$$\:=\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\mathrm{tanh}\:^{βˆ’\mathrm{1}} \left(\frac{\mathrm{tan}\:\left({x}+\frac{\pi}{\mathrm{6}}\right)}{\:\sqrt{\mathrm{3}}}\right)\:+\:{c}\: \\ $$
Answered by MJS_new last updated on 10/Jan/22
∫((sin x +(√3)cos x)/(sin 3x))dx=  =βˆ’βˆ«((((√3)+tan x)(1+tan^2  x))/((3βˆ’tan x)tan x))dx=  =∫((1+tan^2  x)/(((√3)βˆ’tan x)tan x))dx=       [t=tan x β†’ dx=(dt/(1+tan^2  x))]  =∫(dt/(t((√3)βˆ’t)))=((√3)/3)ln ∣(t/(tβˆ’(√3)))∣ =  =((√3)/3)ln ∣((sin x)/(sin x βˆ’(√3)cos x))∣ +C
$$\int\frac{\mathrm{sin}\:{x}\:+\sqrt{\mathrm{3}}\mathrm{cos}\:{x}}{\mathrm{sin}\:\mathrm{3}{x}}{dx}= \\ $$$$=βˆ’\int\frac{\left(\sqrt{\mathrm{3}}+\mathrm{tan}\:{x}\right)\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}\right)}{\left(\mathrm{3}βˆ’\mathrm{tan}\:{x}\right)\mathrm{tan}\:{x}}{dx}= \\ $$$$=\int\frac{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}{\left(\sqrt{\mathrm{3}}βˆ’\mathrm{tan}\:{x}\right)\mathrm{tan}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}}\right] \\ $$$$=\int\frac{{dt}}{{t}\left(\sqrt{\mathrm{3}}βˆ’{t}\right)}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{ln}\:\mid\frac{{t}}{{t}βˆ’\sqrt{\mathrm{3}}}\mid\:= \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{ln}\:\mid\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}\:βˆ’\sqrt{\mathrm{3}}\mathrm{cos}\:{x}}\mid\:+{C} \\ $$
Commented by peter frank last updated on 11/Jan/22
great
$$\mathrm{great} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *