Menu Close

find-singular-point-for-each-1-f-z-e-z-z-2-2-f-z-sinz-z-3-f-z-1-cosz-sinz-2-4-f-z-ln-z-how-can-solve-this-help-me-sir-




Question Number 130416 by mohammad17 last updated on 25/Jan/21
find singular point for each     (1)f(z)=(e^z /z^2 )       ,    (2)f(z)=((sinz)/z)   ,    (3)f(z)=((1−cosz)/(sinz^2 ))     ,   (4)f(z)=ln∣z∣    how can solve this help me sir
findsingularpointforeach(1)f(z)=ezz2,(2)f(z)=sinzz,(3)f(z)=1coszsinz2,(4)f(z)=lnzhowcansolvethishelpmesir
Answered by mathmax by abdo last updated on 25/Jan/21
1) f(z)=(e^z /z^2 )   ,o is a singular point   (alsodouble pole)  and Res(f,o)=lim_(z→0)   (1/((2−1)!)){z^2 f(z)}^((1))  =lim_(z→o)   {e^z }^((1))   =lim_(z→0)     e^z  =1  another way  we have f(z)=(1/z^2 )Σ_(n=0) ^∞  (z^n /(n!))  =Σ_(n=0) ^∞  (1/(n!))z^(n−2)  =(1/z^2 )+(1/z) +(1/2) +(1/(3!))z +(1/(4!))z^2 +....  Res(f,o)=coefficient of((1/z))=1  2)f(z)=((sinz)/z)  ,o is singular point also simple pole and  Res(f,o)=lim_(z→0) zf(z)=lim_(z→0) sinz=0
1)f(z)=ezz2,oisasingularpoint(alsodoublepole)andRes(f,o)=limz01(21)!{z2f(z)}(1)=limzo{ez}(1)=limz0ez=1anotherwaywehavef(z)=1z2n=0znn!=n=01n!zn2=1z2+1z+12+13!z+14!z2+.Res(f,o)=coefficientof(1z)=12)f(z)=sinzz,oissingularpointalsosimplepoleandRes(f,o)=limz0zf(z)=limz0sinz=0

Leave a Reply

Your email address will not be published. Required fields are marked *