Menu Close

find-solution-4-sin-x-1-4-1-2-2-2-sin-x-1-0-in-x-0-2pi-




Question Number 86701 by john santu last updated on 30/Mar/20
find solution   4^(sin x −(1/4))  − (1/(2+(√2))) .2^(sin x)  −1 = 0   in x ∈[ 0,2π ]
findsolution4sinx1412+2.2sinx1=0inx[0,2π]
Commented by john santu last updated on 30/Mar/20
4^(sin x)  .4^(−(1/4))  −(((2−(√2))/2)).2^(sin x)  −1 = 0  (√2) 4^(sin x) −(2−(√2)).2^(sin x) −2 = 0  (√2).2^(sin x)  (2^(sin x) +1)−2(2^(sin x) +1) =0  (2^(sin x) +1)((√2).2^(sin x) −2) =0  ⇒(√2) .2^(sin x)  −2 = 0, 2^(sin x)  = 2^(0.5)   sin x = 0.5 ⇒  { ((x = (π/6))),((x = ((5π)/6))) :}
4sinx.414(222).2sinx1=024sinx(22).2sinx2=02.2sinx(2sinx+1)2(2sinx+1)=0(2sinx+1)(2.2sinx2)=02.2sinx2=0,2sinx=20.5sinx=0.5{x=π6x=5π6

Leave a Reply

Your email address will not be published. Required fields are marked *