Menu Close

find-solution-8-tan-x-8tan-5-x-sec-6-x-in-x-0-pi-2-




Question Number 83975 by jagoll last updated on 08/Mar/20
find solution  8 tan x−8tan^5 x = sec^6 x in x∈ (0, (π/2))
$$\mathrm{find}\:\mathrm{solution} \\ $$$$\mathrm{8}\:\mathrm{tan}\:\mathrm{x}−\mathrm{8tan}\:^{\mathrm{5}} \mathrm{x}\:=\:\mathrm{sec}\:^{\mathrm{6}} \mathrm{x}\:\mathrm{in}\:\mathrm{x}\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right) \\ $$
Answered by TANMAY PANACEA last updated on 08/Mar/20
8a−8a^5 =(1+a^2 )^3   8a(1−a^4 )−(1+a^2 )^3 =0  8a(1+a^2 )(1+a)(1−a)−(1+a^2 )^3 =0  (1+a^2 ){8a(1−a^2 )−1−2a^2 −a^4 }=0  1+a^2 ≠0  8a−8a^3 −1−2a^2 −a^4 =0  a^4 +8a^3 +2a^2 −8a+1=0  deviding by a^2   (a^2 +(1/a^2 ))+8(a−(1/a))+2=0  (a−(1/a))^2 +2+8(a−(1/a))+2=0  k^2 +8k+4=0   [k=a−(1/a)]  k=((−8±(√(64−16)))/2)=((−8±4(√3))/2)=(−4±2(√3) )  a−(1/a)=k  a^2 −ak−1=0  a=((k±(√(k^2 +4)))/2)  wait...
$$\mathrm{8}{a}−\mathrm{8}{a}^{\mathrm{5}} =\left(\mathrm{1}+{a}^{\mathrm{2}} \right)^{\mathrm{3}} \\ $$$$\mathrm{8}{a}\left(\mathrm{1}−{a}^{\mathrm{4}} \right)−\left(\mathrm{1}+{a}^{\mathrm{2}} \right)^{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{8}{a}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}\right)\left(\mathrm{1}−{a}\right)−\left(\mathrm{1}+{a}^{\mathrm{2}} \right)^{\mathrm{3}} =\mathrm{0} \\ $$$$\left(\mathrm{1}+{a}^{\mathrm{2}} \right)\left\{\mathrm{8}{a}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)−\mathrm{1}−\mathrm{2}{a}^{\mathrm{2}} −{a}^{\mathrm{4}} \right\}=\mathrm{0} \\ $$$$\mathrm{1}+{a}^{\mathrm{2}} \neq\mathrm{0} \\ $$$$\mathrm{8}{a}−\mathrm{8}{a}^{\mathrm{3}} −\mathrm{1}−\mathrm{2}{a}^{\mathrm{2}} −{a}^{\mathrm{4}} =\mathrm{0} \\ $$$${a}^{\mathrm{4}} +\mathrm{8}{a}^{\mathrm{3}} +\mathrm{2}{a}^{\mathrm{2}} −\mathrm{8}{a}+\mathrm{1}=\mathrm{0} \\ $$$${deviding}\:{by}\:{a}^{\mathrm{2}} \\ $$$$\left({a}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\right)+\mathrm{8}\left({a}−\frac{\mathrm{1}}{{a}}\right)+\mathrm{2}=\mathrm{0} \\ $$$$\left({a}−\frac{\mathrm{1}}{{a}}\right)^{\mathrm{2}} +\mathrm{2}+\mathrm{8}\left({a}−\frac{\mathrm{1}}{{a}}\right)+\mathrm{2}=\mathrm{0} \\ $$$${k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{4}=\mathrm{0}\:\:\:\left[{k}={a}−\frac{\mathrm{1}}{{a}}\right] \\ $$$${k}=\frac{−\mathrm{8}\pm\sqrt{\mathrm{64}−\mathrm{16}}}{\mathrm{2}}=\frac{−\mathrm{8}\pm\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{2}}=\left(−\mathrm{4}\pm\mathrm{2}\sqrt{\mathrm{3}}\:\right) \\ $$$${a}−\frac{\mathrm{1}}{{a}}={k} \\ $$$${a}^{\mathrm{2}} −{ak}−\mathrm{1}=\mathrm{0} \\ $$$${a}=\frac{{k}\pm\sqrt{{k}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}} \\ $$$${wait}… \\ $$$$ \\ $$
Answered by MJS last updated on 08/Mar/20
8tan x −8tan^5  x =sec^6  x  8((sin x)/(cos x))−8((sin^5  x)/(cos^5  x))=(1/(cos^6  x)) ⇒ cos x ≠0  8sin x cos^5  x −8sin^5  x cos x =1  2sin 4x =1  ⇒ x=(π/(24))∨x=((5π)/(24))
$$\mathrm{8tan}\:{x}\:−\mathrm{8tan}^{\mathrm{5}} \:{x}\:=\mathrm{sec}^{\mathrm{6}} \:{x} \\ $$$$\mathrm{8}\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}−\mathrm{8}\frac{\mathrm{sin}^{\mathrm{5}} \:{x}}{\mathrm{cos}^{\mathrm{5}} \:{x}}=\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{6}} \:{x}}\:\Rightarrow\:\mathrm{cos}\:{x}\:\neq\mathrm{0} \\ $$$$\mathrm{8sin}\:{x}\:\mathrm{cos}^{\mathrm{5}} \:{x}\:−\mathrm{8sin}^{\mathrm{5}} \:{x}\:\mathrm{cos}\:{x}\:=\mathrm{1} \\ $$$$\mathrm{2sin}\:\mathrm{4}{x}\:=\mathrm{1} \\ $$$$\Rightarrow\:{x}=\frac{\pi}{\mathrm{24}}\vee{x}=\frac{\mathrm{5}\pi}{\mathrm{24}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *