Menu Close

find-solution-8-tan-x-8tan-5-x-sec-6-x-in-x-0-pi-2-




Question Number 83975 by jagoll last updated on 08/Mar/20
find solution  8 tan x−8tan^5 x = sec^6 x in x∈ (0, (π/2))
findsolution8tanx8tan5x=sec6xinx(0,π2)
Answered by TANMAY PANACEA last updated on 08/Mar/20
8a−8a^5 =(1+a^2 )^3   8a(1−a^4 )−(1+a^2 )^3 =0  8a(1+a^2 )(1+a)(1−a)−(1+a^2 )^3 =0  (1+a^2 ){8a(1−a^2 )−1−2a^2 −a^4 }=0  1+a^2 ≠0  8a−8a^3 −1−2a^2 −a^4 =0  a^4 +8a^3 +2a^2 −8a+1=0  deviding by a^2   (a^2 +(1/a^2 ))+8(a−(1/a))+2=0  (a−(1/a))^2 +2+8(a−(1/a))+2=0  k^2 +8k+4=0   [k=a−(1/a)]  k=((−8±(√(64−16)))/2)=((−8±4(√3))/2)=(−4±2(√3) )  a−(1/a)=k  a^2 −ak−1=0  a=((k±(√(k^2 +4)))/2)  wait...
8a8a5=(1+a2)38a(1a4)(1+a2)3=08a(1+a2)(1+a)(1a)(1+a2)3=0(1+a2){8a(1a2)12a2a4}=01+a208a8a312a2a4=0a4+8a3+2a28a+1=0devidingbya2(a2+1a2)+8(a1a)+2=0(a1a)2+2+8(a1a)+2=0k2+8k+4=0[k=a1a]k=8±64162=8±432=(4±23)a1a=ka2ak1=0a=k±k2+42wait
Answered by MJS last updated on 08/Mar/20
8tan x −8tan^5  x =sec^6  x  8((sin x)/(cos x))−8((sin^5  x)/(cos^5  x))=(1/(cos^6  x)) ⇒ cos x ≠0  8sin x cos^5  x −8sin^5  x cos x =1  2sin 4x =1  ⇒ x=(π/(24))∨x=((5π)/(24))
8tanx8tan5x=sec6x8sinxcosx8sin5xcos5x=1cos6xcosx08sinxcos5x8sin5xcosx=12sin4x=1x=π24x=5π24

Leave a Reply

Your email address will not be published. Required fields are marked *