find-solution-8-tan-x-8tan-5-x-sec-6-x-in-x-0-pi-2- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 83975 by jagoll last updated on 08/Mar/20 findsolution8tanx−8tan5x=sec6xinx∈(0,π2) Answered by TANMAY PANACEA last updated on 08/Mar/20 8a−8a5=(1+a2)38a(1−a4)−(1+a2)3=08a(1+a2)(1+a)(1−a)−(1+a2)3=0(1+a2){8a(1−a2)−1−2a2−a4}=01+a2≠08a−8a3−1−2a2−a4=0a4+8a3+2a2−8a+1=0devidingbya2(a2+1a2)+8(a−1a)+2=0(a−1a)2+2+8(a−1a)+2=0k2+8k+4=0[k=a−1a]k=−8±64−162=−8±432=(−4±23)a−1a=ka2−ak−1=0a=k±k2+42wait… Answered by MJS last updated on 08/Mar/20 8tanx−8tan5x=sec6x8sinxcosx−8sin5xcos5x=1cos6x⇒cosx≠08sinxcos5x−8sin5xcosx=12sin4x=1⇒x=π24∨x=5π24 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-149510Next Next post: Question-18440 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.