Menu Close

find-solution-d-2-y-dx-2-4-dy-dx-3-cosec-




Question Number 125691 by fajri last updated on 13/Dec/20
find solution :  (d^2 y/dx^(2 ) ) + 4(dy/dx) = 3 cosec θ
findsolution:d2ydx2+4dydx=3cosecθ
Answered by mathmax by abdo last updated on 14/Dec/20
if cosecθ =(1/(sinθ)) e→y^(′′)  +4y^′  =(3/(sinθ))  (the variable is x not θ!)  let y^′  =z ⇒z^′  +z =(3/(sinθ))  h→z^′ =−z ⇒(z^′ /z)=−1 ⇒lnz =−x+c ⇒z =k e^(−x)   lagrange method→z^′  =k^′  e^(−x)  −ke^(−x)   e→k^′  e^(−x) −ke^(−x)  +ke^(−x)  =(3/(sinθ)) ⇒k^′  =(3/(sinθ)) e^x  ⇒  k =(3/(sinθ))∫ e^x  +c =((3e^x )/(sinθ)) +c ⇒z =(((3e^x )/(sinθ))+c)e^(−x)   =(3/(sinθ)) +ce^(−x)   y^′  =z ⇒y^′  =(3/(sinθ)) +ce^(−x)  ⇒y =∫((3/(sinθ ))+ce^(−x) )dx ⇒  y(x)=((3x)/(sinθ))−c e^(−x)  +λ
ifcosecθ=1sinθey+4y=3sinθ(thevariableisxnotθ!)lety=zz+z=3sinθhz=zzz=1lnz=x+cz=kexlagrangemethodz=kexkexekexkex+kex=3sinθk=3sinθexk=3sinθex+c=3exsinθ+cz=(3exsinθ+c)ex=3sinθ+cexy=zy=3sinθ+cexy=(3sinθ+cex)dxy(x)=3xsinθcex+λ

Leave a Reply

Your email address will not be published. Required fields are marked *