Menu Close

find-solution-set-of-inequality-log-2-x-2-3x-1-lt-log-2-x-2-3-x-




Question Number 100666 by bobhans last updated on 28/Jun/20
find solution set of inequality  (log _2 x −2)^(3x−1)  < (log _2 x−2)^(3−x)
findsolutionsetofinequality(log2x2)3x1<(log2x2)3x
Commented by Rasheed.Sindhi last updated on 28/Jun/20
(log _2 x −2)^(3x−1)  < (log _2 x−2)^(3−x)   log _2 x −2≠0,1⇒3x−1<3−x  ⇒4x<4⇒x<1
(log2x2)3x1<(log2x2)3xlog2x20,13x1<3x4x<4x<1
Commented by bramlex last updated on 28/Jun/20
i think not correct sir
ithinknotcorrectsir
Commented by Rasheed.Sindhi last updated on 28/Jun/20
You′re right sir!
Yourerightsir!
Answered by bramlex last updated on 28/Jun/20
⇔(log _2 x−2−1)(3x−1−(3−x))<0  (log _2 x−3)(4x−4)<0   4(log _2 x−3)(x−1) <0  case 1 ⇒ log _2 x−3<0 ∧ x−1>0  x<8 ∧x>1 ⇒1<x<8  case 2 ⇒ log _2 x−3>0 ∧ x−1<0  x >8 ∧ x<1 ⇒x = ∅  solution (1)∪(2) ⇒ 1 < x < 8
(log2x21)(3x1(3x))<0(log2x3)(4x4)<04(log2x3)(x1)<0case1log2x3<0x1>0x<8x>11<x<8case2log2x3>0x1<0x>8x<1x=solution(1)(2)1<x<8
Commented by bemath last updated on 28/Jun/20
sir bramlex it should be (log _2 x−2−1)  not (log _2 x−2+1)
sirbramlexitshouldbe(log2x21)not(log2x2+1)
Commented by bramlex last updated on 28/Jun/20
oo yes..your are right
ooyes..yourareright
Answered by 1549442205 last updated on 28/Jun/20
  the condition for the given inequality   is defined as { ((x>0)),((log_2 x−2>0)) :}  ⇔x>4.Then  The given inequality is equivalent to  [log_2 x−2−1)[(3x−1)−(3−x)]<0  ⇔(log_2 x−3)(4x−4)<0⇔(log_2 x−3)(x−1)<0  ⇔[_( { ((log_2 x−3<0)),((x−1>0)) :}  ⇔ { ((4<x<8)),((x>1)) :}   ⇔4<x<8) ^( { ((log_2 x−3>0)),((x−1<0)) :}  ⇔ { ((x>8)),((x<1)) :}   ⇒has no solutions)   Thus,solution set of the inequality is  the interval (4,8)
theconditionforthegiveninequalityisdefinedas{x>0log2x2>0x>4.ThenThegiveninequalityisequivalentto[log2x21)[(3x1)(3x)]<0(log2x3)(4x4)<0(log2x3)(x1)<0[{log2x3<0x1>0{4<x<8x>14<x<8{log2x3>0x1<0{x>8x<1hasnosolutionsThus,solutionsetoftheinequalityistheinterval(4,8)

Leave a Reply

Your email address will not be published. Required fields are marked *