Question Number 94818 by student work last updated on 21/May/20
$$\:\mathrm{find}\:\mathrm{such}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{if}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\left(\mathrm{x}−\mathrm{2}\right)\:\mathrm{then}\:\mathrm{the}\: \\ $$$$\mathrm{remainder}\:\mathrm{is}\:\mathrm{5},\:\mathrm{if}\:\mathrm{it}\:\mathrm{isdivided}\:\mathrm{by}\:\left(\mathrm{x}−\mathrm{3}\right)\:\mathrm{the}\:\mathrm{remainder} \\ $$$$\mathrm{is}\:\mathrm{9},\:\mathrm{if}\:\mathrm{it}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\left(\mathrm{x}−\mathrm{4}\right)\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{13},\:\mathrm{if}\: \\ $$$$\mathrm{divide}\:\mathrm{by}\:\left(\mathrm{x}−\mathrm{10}\right)\:\mathrm{and}\:\mathrm{the}\:\mathrm{remaider}\:\mathrm{becomes}\:\mathrm{37}\:\mathrm{and} \\ $$$$\mathrm{if}\:\left(\mathrm{x}−\frac{\mathrm{3}}{\mathrm{4}}\right)\:\mathrm{divided}\:\mathrm{by}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{becomes}\:\mathrm{zero}? \\ $$
Commented by Rasheed.Sindhi last updated on 21/May/20
$${The}\:{required}\:{polynomial}\:{is}\:\mathrm{4}{x}−\mathrm{3} \\ $$
Commented by student work last updated on 21/May/20
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{practice}\:\mathrm{der}? \\ $$
Commented by Rasheed.Sindhi last updated on 21/May/20
$${I}\:{shall}\:{write}\:{answer}\:{in}\:{detail}\:{soon}. \\ $$
Commented by student work last updated on 21/May/20
$$\mathrm{you}\:\mathrm{show}\:\mathrm{practice}\:\mathrm{to}\:\mathrm{i}\:\mathrm{learn}\: \\ $$
Commented by mr W last updated on 21/May/20
$$\mathrm{4}{x}−\mathrm{3}\:{is}\:{correct},\:{but}\:{not}\:{the}\:{only}\:{one} \\ $$$${solution},\:{i}\:{think}. \\ $$$${i}'{ll}\:{post}\:{my}\:{solution}\:{later}. \\ $$
Commented by Rasheed.Sindhi last updated on 21/May/20
$${Yes}\:{sir}\:{it}'{s}\:{linear}\:{answer},\:{and} \\ $$$${if}\:{I}'{ve}\:{done}\:{correct}\:{calculation} \\ $$$${quadratic}\:{is}\:{not}\:{possible}.{Now}\:{I}'{m} \\ $$$${tryingfor}\:{cubic}\:{solution}… \\ $$
Commented by student work last updated on 21/May/20
$$\mathrm{please}\:\mathrm{post}\:\mathrm{me}\:\mathrm{solution}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 21/May/20
$${say}\:{the}\:{polynomial}\:{searched}\:{is}\:{f}\left({x}\right). \\ $$$${f}\left({x}\right)\:{can}\:{be}\:{divided}\:{by}\:\left({x}−\frac{\mathrm{3}}{\mathrm{4}}\right)\:{without} \\ $$$${remainder},\:{therefore} \\ $$$${f}\left({x}\right)={g}\left({x}\right)\left({x}−\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$${with}\:{g}\left({x}\right)\:{being}\:{an}\:{other}\:{polynomial}. \\ $$$$ \\ $$$${when}\:{f}\left({x}\right)\:{is}\:{divided}\:{by}\:\left({x}−\mathrm{2}\right)\:{we}\:{get} \\ $$$${remainder}\:\mathrm{5},\:{that}\:{means} \\ $$$${f}\left({x}\right)={p}\left({x}\right)\left({x}−\mathrm{2}\right)+\mathrm{5},\:{i}.{e}.\:{f}\left(\mathrm{2}\right)=\mathrm{5}, \\ $$$${f}\left(\mathrm{2}\right)={g}\left(\mathrm{2}\right)\left(\mathrm{2}−\frac{\mathrm{3}}{\mathrm{4}}\right)=\mathrm{5}\:\Rightarrow{g}\left(\mathrm{2}\right)=\mathrm{4} \\ $$$${similarly} \\ $$$${f}\left(\mathrm{3}\right)={g}\left(\mathrm{3}\right)\left(\mathrm{3}−\frac{\mathrm{3}}{\mathrm{4}}\right)=\mathrm{9}\:\Rightarrow{g}\left(\mathrm{3}\right)=\mathrm{4} \\ $$$${f}\left(\mathrm{4}\right)={g}\left(\mathrm{4}\right)\left(\mathrm{4}−\frac{\mathrm{3}}{\mathrm{4}}\right)=\mathrm{13}\:\Rightarrow{g}\left(\mathrm{4}\right)=\mathrm{4} \\ $$$${f}\left(\mathrm{10}\right)={g}\left(\mathrm{10}\right)\left(\mathrm{10}−\frac{\mathrm{3}}{\mathrm{4}}\right)=\mathrm{37}\:\Rightarrow{g}\left(\mathrm{10}\right)=\mathrm{4} \\ $$$${that}\:{means} \\ $$$${g}\left({x}\right)={k}\left({x}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{10}\right)+\mathrm{4} \\ $$$${with}\:{k}\left({x}\right)\:{being}\:{any}\:{polynomial}. \\ $$$$\Rightarrow{f}\left({x}\right)={g}\left({x}\right)\left({x}−\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\left[{k}\left({x}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{10}\right)+\mathrm{4}\right]\left({x}−\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$${or} \\ $$$$\Rightarrow{f}\left({x}\right)=\left[{c}\left({x}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{10}\right)+\mathrm{1}\right]\left(\mathrm{4}{x}−\mathrm{3}\right) \\ $$$${with}\:{c}\left({x}\right)\:{being}\:{any}\:{polynomial} \\ $$$$\left({including}\:{any}\:{constant}\right) \\ $$
Commented by student work last updated on 21/May/20
$$\mathrm{thanks}\:\mathrm{dear} \\ $$
Commented by Rasheed.Sindhi last updated on 21/May/20
$$\boldsymbol{\mathcal{G}{reat}}\:\boldsymbol{{mr}\mathcal{W}}\:\boldsymbol{{sir}}! \\ $$
Commented by Rasheed.Sindhi last updated on 21/May/20
$${f}\left({x}\right)\:{is}\:{either}\:{linear}\:{or}\:{it}\:{has}\:{degree} \\ $$$${greater}\:{than}\:\mathrm{4}? \\ $$
Commented by mr W last updated on 21/May/20
$${correct}\:{sir}! \\ $$