Question Number 80708 by M±th+et£s last updated on 05/Feb/20
$${find}\:{sum}\:{of}\:{the}\:{series} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$
Commented by abdomathmax last updated on 05/Feb/20
$${S}=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)}\:=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \left\{\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{3}}\right\} \\ $$$$\:\Rightarrow\mathrm{2}{S}=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{3}}\:\:{we}\left[{have}\right. \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{3}}\:=\frac{\mathrm{1}}{\mathrm{3}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{3}}\:\:\left({n}={p}−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}+\sum_{{p}=\mathrm{2}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}−\mathrm{1}} }{\mathrm{2}{p}+\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{3}}\:−\sum_{{p}=\mathrm{2}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{2}{p}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}−\left\{\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}} }{\mathrm{2}{p}+\mathrm{1}}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}−\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{2}}{\mathrm{3}}=\mathrm{1}−\frac{\pi}{\mathrm{4}}\:\Rightarrow\mathrm{2}{S}=\frac{\pi}{\mathrm{2}}−\mathrm{1} \\ $$$${S}=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$
Commented by M±th+et£s last updated on 05/Feb/20
$${nice}\:{solution}\:{sir} \\ $$
Commented by mathmax by abdo last updated on 05/Feb/20
$${thanks}. \\ $$
Answered by mind is power last updated on 05/Feb/20
$$\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }=\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{k}} {x}^{\mathrm{2}{k}} \\ $$$$\Rightarrow{arctan}\left({x}\right)=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}{x}^{\mathrm{2}{k}+\mathrm{1}} \\ $$$$\Rightarrow\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}={arctan}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}} \\ $$$$\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{3}}=\underset{{k}\geqslant\mathrm{1}} {\sum}\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{\mathrm{2}{k}+\mathrm{1}}\Rightarrow\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{3}}=−\left(\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}−\mathrm{1}\right) \\ $$$$=−\frac{\pi}{\mathrm{4}}+\mathrm{1} \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\left\{\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}−\Sigma\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{3}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\pi}{\mathrm{4}}−\left(−\frac{\pi}{\mathrm{4}}+\mathrm{1}\right)\right\}=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 05/Feb/20
$${wonderful}\:{solution}\:{sir}! \\ $$
Commented by M±th+et£s last updated on 05/Feb/20
$${god}\:{bless}\:{you}\:{sir}\:.\:{thank}\:{you} \\ $$