Menu Close

Find-sum-of-this-expression-n-1-2-n-2-3-n-3-4-n-4-n-n-n-Please-show-your-workings-Thank-you-




Question Number 151097 by naka3546 last updated on 18/Aug/21
Find  sum  of  this  expression .   ((n),(1) ) + 2 ((n),(2) ) + 3 ((n),(3) ) + 4 ((n),(4) ) + … + n ((n),(n) )  Please  show  your  workings. Thank  you .
Findsumofthisexpression.(n1)+2(n2)+3(n3)+4(n4)++n(nn)Pleaseshowyourworkings.Thankyou.
Answered by Olaf_Thorendsen last updated on 18/Aug/21
S_n  = Σ_(k=1) ^n kC_k ^n   f(x) = (x+1)^n  = Σ_(k=0) ^n C_k ^n x^k   f′(x) = n(x+1)^(n−1)  = Σ_(k=1) ^n kC_k ^n x^(k−1)   f′(1) = n2^(n−1)  = Σ_(k=1) ^n kC_k ^n  = S_n
Sn=nk=1kCknf(x)=(x+1)n=nk=0Cknxkf(x)=n(x+1)n1=nk=1kCknxk1f(1)=n2n1=nk=1kCkn=Sn
Answered by mr W last updated on 18/Aug/21
S_n = ((n),(1) ) + 2 ((n),(2) ) + 3 ((n),(3) ) + 4 ((n),(4) ) + … + n ((n),(n) )  S_n =0 ((n),(0) )+ ((n),(1) ) + 2 ((n),(2) ) + 3 ((n),(3) ) + 4 ((n),(4) ) + … + n ((n),(n) )  S_n =n ((n),(n) )+(n−1) ((n),((n−1)) ) +(n− 2) ((n),((n−2)) ) +(n− 3) ((n),((n−3)) ) + … + 0 ((n),((n−n)) )  S_n =n ((n),(0) )+(n−1) ((n),(1) ) +(n− 2) ((n),(2) ) +(n− 3) ((n),(3) ) + … + 0 ((n),(n) )  2S_n =n[ ((n),(0) )+ ((n),(1) ) + ((n),(2) ) + ((n),(3) ) + … +  ((n),(n) )]  2S_n =n×2^n   ⇒S_n =n×2^(n−1)
Sn=(n1)+2(n2)+3(n3)+4(n4)++n(nn)Sn=0(n0)+(n1)+2(n2)+3(n3)+4(n4)++n(nn)Sn=n(nn)+(n1)(nn1)+(n2)(nn2)+(n3)(nn3)++0(nnn)Sn=n(n0)+(n1)(n1)+(n2)(n2)+(n3)(n3)++0(nn)2Sn=n[(n0)+(n1)+(n2)+(n3)++(nn)]2Sn=n×2nSn=n×2n1

Leave a Reply

Your email address will not be published. Required fields are marked *