Menu Close

find-tbe-nature-of-n-2-1-n-ln-n-2-




Question Number 32298 by abdo imad last updated on 22/Mar/18
find tbe nature of  Σ_(n≥2)    (1/(n(ln(n))^2 )) .
$${find}\:{tbe}\:{nature}\:{of}\:\:\sum_{{n}\geqslant\mathrm{2}} \:\:\:\frac{\mathrm{1}}{{n}\left({ln}\left({n}\right)\right)^{\mathrm{2}} }\:. \\ $$
Commented by abdo imad last updated on 01/Apr/18
 let put ϕ(t) = (1/(t(lnt)^2 )) with t≥2  we have  ϕ^′ (t) = −(((t(lnt)^2 )^′ )/(t^2 (lnt)^4 ))  =−(((lnt)^2  +2lnt)/(t^2 (lnt)^4 )) <0 ϕ is decreasing so  the serie have tbe same naturewith ∫_2 ^(+∞)   (dt/(t(lnt)^2 )) dt  ch. lnt =x give   ∫_2 ^(+∞)    (dt/(t(lnt)^2 )) dt  = ∫_2 ^(+∞)   ((e^x dx)/(x^2 e^x ))  = ∫_2 ^(+∞)   (dx/x^2 ) and this integral  is convergent so the serie is convergent.
$$\:{let}\:{put}\:\varphi\left({t}\right)\:=\:\frac{\mathrm{1}}{{t}\left({lnt}\right)^{\mathrm{2}} }\:{with}\:{t}\geqslant\mathrm{2}\:\:{we}\:{have} \\ $$$$\varphi^{'} \left({t}\right)\:=\:−\frac{\left({t}\left({lnt}\right)^{\mathrm{2}} \right)^{'} }{{t}^{\mathrm{2}} \left({lnt}\right)^{\mathrm{4}} }\:\:=−\frac{\left({lnt}\right)^{\mathrm{2}} \:+\mathrm{2}{lnt}}{{t}^{\mathrm{2}} \left({lnt}\right)^{\mathrm{4}} }\:<\mathrm{0}\:\varphi\:{is}\:{decreasing}\:{so} \\ $$$${the}\:{serie}\:{have}\:{tbe}\:{same}\:{naturewith}\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{dt}}{{t}\left({lnt}\right)^{\mathrm{2}} }\:{dt} \\ $$$${ch}.\:{lnt}\:={x}\:{give}\: \\ $$$$\int_{\mathrm{2}} ^{+\infty} \:\:\:\frac{{dt}}{{t}\left({lnt}\right)^{\mathrm{2}} }\:{dt}\:\:=\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{e}^{{x}} {dx}}{{x}^{\mathrm{2}} {e}^{{x}} }\:\:=\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} }\:{and}\:{this}\:{integral} \\ $$$${is}\:{convergent}\:{so}\:{the}\:{serie}\:{is}\:{convergent}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *