Menu Close

find-tbe-polynom-p-withdegre-5-wich-verify-p-x-1-p-x-x-4-and-p-0-0-for-that-put-p-x-ax-5-bx-4-cx-3-dx-2-ex-f-and-find-the-coefficients-2-find-interms-of-n-the-value-of-sum-1-2-4-3




Question Number 38740 by abdo.msup.com last updated on 29/Jun/18
find tbe polynom p withdegre 5 wich verify  p(x+1)−p(x)=x^4   and p(0)=0  for that put p(x)=ax^5  +bx^4  +cx^3  +dx^2   +ex +f  and find the coefficients.  2) find interms of n the value of  sum 1 +2^4  +3^4 +....+n^4  .
findtbepolynompwithdegre5wichverifyp(x+1)p(x)=x4andp(0)=0forthatputp(x)=ax5+bx4+cx3+dx2+ex+fandfindthecoefficients.2)findintermsofnthevalueofsum1+24+34+.+n4.
Commented by prakash jain last updated on 29/Jun/18
(n+1)^5 −n^5 =5n^4 +10n^3 +10n^2 +5n+1  Σ_(i=0) ^n (i+1)^5 −i^5 =Σ_(i=1) ^n 5i^4 +10i^3 +10i^2 +5i+1  Σ_(i=1) ^n i^4 =(1/5)(n+1)^5 −((n^2 (n+1)^2 )/2)               −((n(n+1)(2n+1))/3)−((n(n+1))/2)−(n/5)
(n+1)5n5=5n4+10n3+10n2+5n+1ni=0(i+1)5i5=ni=15i4+10i3+10i2+5i+1ni=1i4=15(n+1)5n2(n+1)22n(n+1)(2n+1)3n(n+1)2n5
Commented by math khazana by abdo last updated on 29/Jun/18
sir Prakash are you staying in india or abroad..
sirPrakashareyoustayinginindiaorabroad..
Commented by prakash jain last updated on 30/Jun/18
I am in India.
IaminIndia.
Commented by math khazana by abdo last updated on 30/Jun/18
good sir i hope to take a trip to india and see   the himalaya mountains and other places...
goodsirihopetotakeatriptoindiaandseethehimalayamountainsandotherplaces
Answered by MrW3 last updated on 29/Jun/18
p(x)=ax^5  +bx^4  +cx^3  +dx^2 +ex+f  p(0)=0⇒f=0  p(x+1)=a(x+1)^5  +b(x+1)^4  +c(x+1)^3  +d(x+1)^2 +e(x+1)  p(x+1)−p(x)=a[(x+1)^5 −x^5 ]+b[(x+1)^4 −x^4 ]+c[(x+1)^3 −x^3 ]+d[(x+1)^2 −x^2 ]+e=x^4   a[5x^4 +10x^3 +10x^2 +5x+1]+b[4x^3 +6x^2 +4x+1]+c[3x^2 +3x+1]+d[2x+1]+e=x^4   5ax^4 +(10a+4b)x^3 +(10a+6b+3c)x^2 +(5a+4b+3c+2d)x+(a+b+c+d+e)=x^4   ⇒5a=1⇒a=(1/5)  ⇒10a+4b=0⇒b=−(5/2)a=−(1/2)  ⇒10a+6b+3c=0⇒c=−((10)/3)a−2b=−(1/6)+1=−(5/6)  ⇒5a+4b+3c+2d=0⇒d=−(5/2)a−2b−(3/2)c=−(1/2)+1+(5/4)=(7/4)  ⇒a+b+c+d+e=0⇒e=−a−b−c−d=−(1/5)+(1/2)+(5/6)−(7/4)=((−12+30+50−85)/(60))=−((17)/(60))
p(x)=ax5+bx4+cx3+dx2+ex+fp(0)=0f=0p(x+1)=a(x+1)5+b(x+1)4+c(x+1)3+d(x+1)2+e(x+1)p(x+1)p(x)=a[(x+1)5x5]+b[(x+1)4x4]+c[(x+1)3x3]+d[(x+1)2x2]+e=x4a[5x4+10x3+10x2+5x+1]+b[4x3+6x2+4x+1]+c[3x2+3x+1]+d[2x+1]+e=x45ax4+(10a+4b)x3+(10a+6b+3c)x2+(5a+4b+3c+2d)x+(a+b+c+d+e)=x45a=1a=1510a+4b=0b=52a=1210a+6b+3c=0c=103a2b=16+1=565a+4b+3c+2d=0d=52a2b32c=12+1+54=74a+b+c+d+e=0e=abcd=15+12+5674=12+30+508560=1760
Commented by math khazana by abdo last updated on 29/Jun/18
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *