Menu Close

find-tbe-value-of-n-2-n-2-n-1-n-1-2-n-1-2-




Question Number 33713 by abdo imad last updated on 22/Apr/18
find tbe value of Σ_(n=2) ^∞  ((n^2 −n+1)/((n−1)^2 (n+1)^2 )) .
findtbevalueofn=2n2n+1(n1)2(n+1)2.
Commented by prof Abdo imad last updated on 26/Apr/18
let put S_n =Σ_(k=2) ^n   ((n^2 −n+1)/((n−1)^2 (n+1)^2 )) let?drcompose  F(x)= ((x^2 −x +1)/((x−1)^2 (x+1)^2 ))  F(x)= (a/(x−1)) +(b/((x−1)^2 )) +(b/(x+1))  +(c/((x+1)^2 ))  b=lim_(x→1) (x−1)^2 F(x)= (1/4)  c =lim_(x→−1) (x+1)^2 F(x)= (3/4) ⇒  F(x)= (a/(x−1)) +(1/(4(x−1)^2 )) +(b/(x+1)) +(3/(4(x+1)^2 ))  F(0)=1 = −a +(1/4)+b +(3/4) = 1+b−a ⇒b=a ⇒  F(x)= (a/(x−1)) + (1/(4(x−1)^2 )) +(a/(x+1))  +(3/(4(x+1)^2 ))  =((2ax)/(x^2 −1))  +(1/(4(x−1)^2 )) + (3/(4(x+1)^2 ))  lim_(x→+∞) xF(x)=0 = 2a ⇒a=0 ⇒  F(x)= (1/(4(x−1)^2 )) + (3/(4(x+1)^2 )) ⇒  S_n = (1/4) Σ_(k=2) ^n  (1/((k−1)^2 )) +(3/4) Σ_(k=2) ^n  (1/((k+1)^2 )) but  Σ_(k=2) ^n  (1/((k−1)^2 )) = Σ_(k=1) ^(n−1)  (1/k^2 ) =ξ_(n−1) (2)→ξ(2)=(π^2 /6)  Σ_(k=2) ^n   (1/((k+1)^2 )) = Σ_(k=3) ^(n+1)    (1/k^2 ) = Σ_(k=1) ^(n+1)  (1/k^2 ) −1−(1/4)  =ξ_(n+1) (2) −(3/4) →ξ(2)−(3/4) =(π^2 /6) −(3/4)  lim_(n→+∞)  S_n =(1/4)(π^2 /6) +(3/4)( (π^2 /6) −(3/4))  =(π^2 /(24)) + ((3π^2 )/(24)) −(9/(16)) = (π^2 /6) −(9/(16))  .
letputSn=k=2nn2n+1(n1)2(n+1)2let?drcomposeF(x)=x2x+1(x1)2(x+1)2F(x)=ax1+b(x1)2+bx+1+c(x+1)2b=limx1(x1)2F(x)=14c=limx1(x+1)2F(x)=34F(x)=ax1+14(x1)2+bx+1+34(x+1)2F(0)=1=a+14+b+34=1+bab=aF(x)=ax1+14(x1)2+ax+1+34(x+1)2=2axx21+14(x1)2+34(x+1)2limx+xF(x)=0=2aa=0F(x)=14(x1)2+34(x+1)2Sn=14k=2n1(k1)2+34k=2n1(k+1)2butk=2n1(k1)2=k=1n11k2=ξn1(2)ξ(2)=π26k=2n1(k+1)2=k=3n+11k2=k=1n+11k2114=ξn+1(2)34ξ(2)34=π2634limn+Sn=14π26+34(π2634)=π224+3π224916=π26916.
Commented by sma3l2996 last updated on 26/Apr/18
I think you have an error on lines 14 and 15  −1−(1/4)=((−5)/4)
Ithinkyouhaveanerroronlines14and15114=54
Commented by prof Abdo imad last updated on 26/Apr/18
yes yes you are right i will correct the answer  thank you so much sir sma3l....
yesyesyouarerightiwillcorrecttheanswerthankyousomuchsirsma3l.
Commented by prof Abdo imad last updated on 26/Apr/18
error from line 15Σ_(k=2) ^n  (1/((k+1)^2 )) =ξ_(n+1) (2)−(5/4)  →_(n→+∞)  ξ(2)−(5/4) =(π^2 /6) −(5/4) ⇒  lim_(n→+∞)  S_n = (1/4) (π^2 /6) +(3/4)( (π^2 /6) −(5/4))  =(π^2 /(24)) +((3π^2 )/(24)) −((15)/(16)) = (π^2 /6) −((15)/(16))  ★lim S_n =(π^2 /6) −((15)/(16))★
errorfromline15k=2n1(k+1)2=ξn+1(2)54n+ξ(2)54=π2654limn+Sn=14π26+34(π2654)=π224+3π2241516=π261516limSn=π261516
Answered by sma3l2996 last updated on 23/Apr/18
A_n =Σ_(n=2) ^∞ ((n^2 −n+1)/((n−1)^2 (n+1)^2 ))=Σ_(n=2) ^∞ ((a/(n−1))+(b/((n−1)^2 ))+(c/(n+1))+(d/((n+1)^2 )))  with  a=c=0  ;  b=(1/4)  ;  d=(3/4)    Σ_(n=2) ^∞ ((n^2 −n+1)/((n−1)^2 (n+1)^2 ))=(1/4)Σ_(n=2) ^∞ ((1/((n−1)^2 ))+(3/((n+1)^2 )))  =(1/4)Σ_(n=2) ^∞ (1/((n−1)^2 ))+(3/4)Σ_(n=2) ^∞ (1/((n+1)^2 ))  let  m=n−1   and   k=n+1  so  Σ_(n=2) ^∞ ((n^2 −n+1)/((n−1)^2 (n+1)^2 ))=(1/4)Σ_(m=1) ^∞ (1/m^2 )+(3/4)Σ_(k=3) ^∞ (1/k^2 )  =(1/4)ξ(2)+(3/4)(ξ(2)−((1/1^2 )+(1/2^2 )))=ξ(2)−(5/4) with  (ξ(x)  is zeta function)  =(π^2 /6)−(5/4)
An=n=2n2n+1(n1)2(n+1)2=n=2(an1+b(n1)2+cn+1+d(n+1)2)witha=c=0;b=14;d=34n=2n2n+1(n1)2(n+1)2=14n=2(1(n1)2+3(n+1)2)=14n=21(n1)2+34n=21(n+1)2letm=n1andk=n+1son=2n2n+1(n1)2(n+1)2=14m=11m2+34k=31k2=14ξ(2)+34(ξ(2)(112+122))=ξ(2)54with(ξ(x)iszetafunction)=π2654
Commented by prof Abdo imad last updated on 26/Apr/18
you have commited a error of calculus sir sma3l..
youhavecommitedaerrorofcalculussirsma3l..
Commented by sma3l2996 last updated on 26/Apr/18
(1/4)ξ(2)+(3/4)(ξ(2)−(5/4))=ξ(2)−((15)/(16))  =(π^2 /6)−((15)/(16))
14ξ(2)+34(ξ(2)54)=ξ(2)1516=π261516

Leave a Reply

Your email address will not be published. Required fields are marked *