Menu Close

Find-the-2-2-matrix-A-such-that-4-0-0-4-A-A-1-3-0-0-3-




Question Number 125768 by Don08q last updated on 13/Dec/20
Find the 2×2 matrix A such that     (((−4),(     0)),((    0),(−4)) )   −  A  =  A^(−1)  ((3,0),(0,3) )
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{2}×\mathrm{2}\:\mathrm{matrix}\:{A}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\begin{pmatrix}{−\mathrm{4}}&{\:\:\:\:\:\mathrm{0}}\\{\:\:\:\:\mathrm{0}}&{−\mathrm{4}}\end{pmatrix}\:\:\:−\:\:{A}\:\:=\:\:{A}^{−\mathrm{1}} \begin{pmatrix}{\mathrm{3}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{3}}\end{pmatrix} \\ $$
Answered by 676597498 last updated on 13/Dec/20
A= ((a,b),(c,d) )   det(A)=ad−cd  A^(−1) =(1/(ad−cd)) ((d,(−b)),((−c ),(   a)) )   (((−4),(    0)),(0,(−4)) ) − ((d,(−b)),((−c),(   d)) ) =(1/(ad−cd))  ((d,(−b)),((−c),(   a)) )  ((3,0),(0,3) )  ⇒  (((−4−d),b),(c,(−4−d)) ) =(3/(ad−cd)) ((d,(−b)),((−c),(    a)) )  equate enteries and solve
$${A}=\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}\: \\ $$$${det}\left({A}\right)={ad}−{cd} \\ $$$${A}^{−\mathrm{1}} =\frac{\mathrm{1}}{{ad}−{cd}}\begin{pmatrix}{{d}}&{−{b}}\\{−{c}\:}&{\:\:\:{a}}\end{pmatrix} \\ $$$$\begin{pmatrix}{−\mathrm{4}}&{\:\:\:\:\mathrm{0}}\\{\mathrm{0}}&{−\mathrm{4}}\end{pmatrix}\:−\begin{pmatrix}{{d}}&{−{b}}\\{−{c}}&{\:\:\:{d}}\end{pmatrix}\:=\frac{\mathrm{1}}{{ad}−{cd}}\:\begin{pmatrix}{{d}}&{−{b}}\\{−{c}}&{\:\:\:{a}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{3}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{3}}\end{pmatrix} \\ $$$$\Rightarrow\:\begin{pmatrix}{−\mathrm{4}−{d}}&{{b}}\\{{c}}&{−\mathrm{4}−{d}}\end{pmatrix}\:=\frac{\mathrm{3}}{{ad}−{cd}}\begin{pmatrix}{{d}}&{−{b}}\\{−{c}}&{\:\:\:\:{a}}\end{pmatrix} \\ $$$${equate}\:{enteries}\:{and}\:{solve} \\ $$
Answered by Olaf last updated on 13/Dec/20
−4I−A = A^(−1) ×3I = 3A^(−1)   A^2 +4A+3I = 0^∼  (matrice null)  (A+I)(A+3I) = 0^∼   A = −I or A = −3I
$$−\mathrm{4I}−\mathrm{A}\:=\:\mathrm{A}^{−\mathrm{1}} ×\mathrm{3I}\:=\:\mathrm{3A}^{−\mathrm{1}} \\ $$$$\mathrm{A}^{\mathrm{2}} +\mathrm{4A}+\mathrm{3I}\:=\:\overset{\sim} {\mathrm{0}}\:\left(\mathrm{matrice}\:\mathrm{null}\right) \\ $$$$\left(\mathrm{A}+\mathrm{I}\right)\left(\mathrm{A}+\mathrm{3I}\right)\:=\:\overset{\sim} {\mathrm{0}} \\ $$$$\mathrm{A}\:=\:−\mathrm{I}\:\mathrm{or}\:\mathrm{A}\:=\:−\mathrm{3I} \\ $$
Commented by mindispower last updated on 13/Dec/20
AM=0⇏A=0 or M=0   (((0    0)),((1    0)) ). (((0    0)),((1    0     )) )=0
$${AM}=\mathrm{0}\nRightarrow{A}=\mathrm{0}\:{or}\:{M}=\mathrm{0} \\ $$$$\begin{pmatrix}{\mathrm{0}\:\:\:\:\mathrm{0}}\\{\mathrm{1}\:\:\:\:\mathrm{0}}\end{pmatrix}.\begin{pmatrix}{\mathrm{0}\:\:\:\:\mathrm{0}}\\{\mathrm{1}\:\:\:\:\mathrm{0}\:\:\:\:\:}\end{pmatrix}=\mathrm{0} \\ $$
Commented by Olaf last updated on 14/Dec/20
Sure sir but in your example  the determinant of A and M are 0.  It′s not the case in the exercise and we  verify that the two solutions found  are really solutions... of course.
$$\mathrm{Sure}\:\mathrm{sir}\:\mathrm{but}\:\mathrm{in}\:\mathrm{your}\:\mathrm{example} \\ $$$$\mathrm{the}\:\mathrm{determinant}\:\mathrm{of}\:\mathrm{A}\:\mathrm{and}\:\mathrm{M}\:\mathrm{are}\:\mathrm{0}. \\ $$$$\mathrm{It}'\mathrm{s}\:\mathrm{not}\:\mathrm{the}\:\mathrm{case}\:\mathrm{in}\:\mathrm{the}\:\mathrm{exercise}\:\mathrm{and}\:\mathrm{we} \\ $$$$\mathrm{verify}\:\mathrm{that}\:\mathrm{the}\:\mathrm{two}\:\mathrm{solutions}\:\mathrm{found} \\ $$$$\mathrm{are}\:\mathrm{really}\:\mathrm{solutions}…\:\mathrm{of}\:\mathrm{course}. \\ $$
Answered by liberty last updated on 13/Dec/20
 (((a    b)),((c    d)) ) [  (((−4      0)),((   0     −4)) )− (((a     b)),((c      d)) ) ] =  (((3    0)),((0    3)) )   (((a    b)),((c    d)) )  (((−4−a        − b)),((      −c      −4−d)) ) =  (((3      0)),((0     3)) )   (((−a^2 −4a−bc        −ab−4b−bd)),((−ac−4c−cd        −bc−4d−d^2 )) ) =  (((3    0)),((0    3)) )  (•) −ab−4b−bd=0 ; b(a+4+d)=0 → { ((b=0)),((a+d=−4)) :}  (••)−ac−4c−cd=0 ; c(a+d+4)=0→ { ((c=0)),((a+d=−4)) :}  for b=0 ⇒−a^2 −4a=3 ; a^2 +4a+3=0   (a+1)(a+3)=0→ { ((a=−1 ∧d=−3)),((a=−3 ∧d=−1)) :}  A= (((−1        0)),((    0      −3)) ) or A= (((−3      0)),((   0     −1)) )
$$\begin{pmatrix}{{a}\:\:\:\:{b}}\\{{c}\:\:\:\:{d}}\end{pmatrix}\:\left[\:\begin{pmatrix}{−\mathrm{4}\:\:\:\:\:\:\mathrm{0}}\\{\:\:\:\mathrm{0}\:\:\:\:\:−\mathrm{4}}\end{pmatrix}−\begin{pmatrix}{{a}\:\:\:\:\:{b}}\\{{c}\:\:\:\:\:\:{d}}\end{pmatrix}\:\right]\:=\:\begin{pmatrix}{\mathrm{3}\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{a}\:\:\:\:{b}}\\{{c}\:\:\:\:{d}}\end{pmatrix}\:\begin{pmatrix}{−\mathrm{4}−{a}\:\:\:\:\:\:\:\:−\:{b}}\\{\:\:\:\:\:\:−{c}\:\:\:\:\:\:−\mathrm{4}−{d}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{3}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\begin{pmatrix}{−{a}^{\mathrm{2}} −\mathrm{4}{a}−{bc}\:\:\:\:\:\:\:\:−{ab}−\mathrm{4}{b}−{bd}}\\{−{ac}−\mathrm{4}{c}−{cd}\:\:\:\:\:\:\:\:−{bc}−\mathrm{4}{d}−{d}^{\mathrm{2}} }\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{3}\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\left(\bullet\right)\:−{ab}−\mathrm{4}{b}−{bd}=\mathrm{0}\:;\:{b}\left({a}+\mathrm{4}+{d}\right)=\mathrm{0}\:\rightarrow\begin{cases}{{b}=\mathrm{0}}\\{{a}+{d}=−\mathrm{4}}\end{cases} \\ $$$$\left(\bullet\bullet\right)−{ac}−\mathrm{4}{c}−{cd}=\mathrm{0}\:;\:{c}\left({a}+{d}+\mathrm{4}\right)=\mathrm{0}\rightarrow\begin{cases}{{c}=\mathrm{0}}\\{{a}+{d}=−\mathrm{4}}\end{cases} \\ $$$${for}\:{b}=\mathrm{0}\:\Rightarrow−{a}^{\mathrm{2}} −\mathrm{4}{a}=\mathrm{3}\:;\:{a}^{\mathrm{2}} +\mathrm{4}{a}+\mathrm{3}=\mathrm{0} \\ $$$$\:\left({a}+\mathrm{1}\right)\left({a}+\mathrm{3}\right)=\mathrm{0}\rightarrow\begin{cases}{{a}=−\mathrm{1}\:\wedge{d}=−\mathrm{3}}\\{{a}=−\mathrm{3}\:\wedge{d}=−\mathrm{1}}\end{cases} \\ $$$${A}=\begin{pmatrix}{−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}}\\{\:\:\:\:\mathrm{0}\:\:\:\:\:\:−\mathrm{3}}\end{pmatrix}\:{or}\:{A}=\begin{pmatrix}{−\mathrm{3}\:\:\:\:\:\:\mathrm{0}}\\{\:\:\:\mathrm{0}\:\:\:\:\:−\mathrm{1}}\end{pmatrix} \\ $$
Commented by liberty last updated on 13/Dec/20
checking  A= (((−1     0)),((   0    −3)) ) ⇒A^(−1) =(1/3) (((−3      0)),((   0     −1)) )  (•)  (((−4      0 )),((   0   −4)) ) − (((−1     0)),((   0    −3)) ) = (1/3)  (((−3    0)),((   0    −1)) )  (((3   0)),((0   3)) )  ⇔  (((−3      0)),((   0     −1)) ) =  (((−3     0)),((   0      −1)) ) I (true)
$${checking} \\ $$$${A}=\begin{pmatrix}{−\mathrm{1}\:\:\:\:\:\mathrm{0}}\\{\:\:\:\mathrm{0}\:\:\:\:−\mathrm{3}}\end{pmatrix}\:\Rightarrow{A}^{−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{3}}\begin{pmatrix}{−\mathrm{3}\:\:\:\:\:\:\mathrm{0}}\\{\:\:\:\mathrm{0}\:\:\:\:\:−\mathrm{1}}\end{pmatrix} \\ $$$$\left(\bullet\right)\:\begin{pmatrix}{−\mathrm{4}\:\:\:\:\:\:\mathrm{0}\:}\\{\:\:\:\mathrm{0}\:\:\:−\mathrm{4}}\end{pmatrix}\:−\begin{pmatrix}{−\mathrm{1}\:\:\:\:\:\mathrm{0}}\\{\:\:\:\mathrm{0}\:\:\:\:−\mathrm{3}}\end{pmatrix}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\begin{pmatrix}{−\mathrm{3}\:\:\:\:\mathrm{0}}\\{\:\:\:\mathrm{0}\:\:\:\:−\mathrm{1}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{3}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\Leftrightarrow\:\begin{pmatrix}{−\mathrm{3}\:\:\:\:\:\:\mathrm{0}}\\{\:\:\:\mathrm{0}\:\:\:\:\:−\mathrm{1}}\end{pmatrix}\:=\:\begin{pmatrix}{−\mathrm{3}\:\:\:\:\:\mathrm{0}}\\{\:\:\:\mathrm{0}\:\:\:\:\:\:−\mathrm{1}}\end{pmatrix}\:{I}\:\left({true}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *