Menu Close

Find-the-2-2-matrix-A-such-that-4-0-0-4-A-A-1-3-0-0-3-




Question Number 125768 by Don08q last updated on 13/Dec/20
Find the 2×2 matrix A such that     (((−4),(     0)),((    0),(−4)) )   −  A  =  A^(−1)  ((3,0),(0,3) )
Findthe2×2matrixAsuchthat(4004)A=A1(3003)
Answered by 676597498 last updated on 13/Dec/20
A= ((a,b),(c,d) )   det(A)=ad−cd  A^(−1) =(1/(ad−cd)) ((d,(−b)),((−c ),(   a)) )   (((−4),(    0)),(0,(−4)) ) − ((d,(−b)),((−c),(   d)) ) =(1/(ad−cd))  ((d,(−b)),((−c),(   a)) )  ((3,0),(0,3) )  ⇒  (((−4−d),b),(c,(−4−d)) ) =(3/(ad−cd)) ((d,(−b)),((−c),(    a)) )  equate enteries and solve
A=(abcd)det(A)=adcdA1=1adcd(dbca)(4004)(dbcd)=1adcd(dbca)(3003)(4dbc4d)=3adcd(dbca)equateenteriesandsolve
Answered by Olaf last updated on 13/Dec/20
−4I−A = A^(−1) ×3I = 3A^(−1)   A^2 +4A+3I = 0^∼  (matrice null)  (A+I)(A+3I) = 0^∼   A = −I or A = −3I
4IA=A1×3I=3A1A2+4A+3I=0(matricenull)(A+I)(A+3I)=0A=IorA=3I
Commented by mindispower last updated on 13/Dec/20
AM=0⇏A=0 or M=0   (((0    0)),((1    0)) ). (((0    0)),((1    0     )) )=0
AM=0A=0orM=0(0010).(0010)=0
Commented by Olaf last updated on 14/Dec/20
Sure sir but in your example  the determinant of A and M are 0.  It′s not the case in the exercise and we  verify that the two solutions found  are really solutions... of course.
SuresirbutinyourexamplethedeterminantofAandMare0.Itsnotthecaseintheexerciseandweverifythatthetwosolutionsfoundarereallysolutionsofcourse.
Answered by liberty last updated on 13/Dec/20
 (((a    b)),((c    d)) ) [  (((−4      0)),((   0     −4)) )− (((a     b)),((c      d)) ) ] =  (((3    0)),((0    3)) )   (((a    b)),((c    d)) )  (((−4−a        − b)),((      −c      −4−d)) ) =  (((3      0)),((0     3)) )   (((−a^2 −4a−bc        −ab−4b−bd)),((−ac−4c−cd        −bc−4d−d^2 )) ) =  (((3    0)),((0    3)) )  (•) −ab−4b−bd=0 ; b(a+4+d)=0 → { ((b=0)),((a+d=−4)) :}  (••)−ac−4c−cd=0 ; c(a+d+4)=0→ { ((c=0)),((a+d=−4)) :}  for b=0 ⇒−a^2 −4a=3 ; a^2 +4a+3=0   (a+1)(a+3)=0→ { ((a=−1 ∧d=−3)),((a=−3 ∧d=−1)) :}  A= (((−1        0)),((    0      −3)) ) or A= (((−3      0)),((   0     −1)) )
(abcd)[(4004)(abcd)]=(3003)(abcd)(4abc4d)=(3003)(a24abcab4bbdac4ccdbc4dd2)=(3003)()ab4bbd=0;b(a+4+d)=0{b=0a+d=4()ac4ccd=0;c(a+d+4)=0{c=0a+d=4forb=0a24a=3;a2+4a+3=0(a+1)(a+3)=0{a=1d=3a=3d=1A=(1003)orA=(3001)
Commented by liberty last updated on 13/Dec/20
checking  A= (((−1     0)),((   0    −3)) ) ⇒A^(−1) =(1/3) (((−3      0)),((   0     −1)) )  (•)  (((−4      0 )),((   0   −4)) ) − (((−1     0)),((   0    −3)) ) = (1/3)  (((−3    0)),((   0    −1)) )  (((3   0)),((0   3)) )  ⇔  (((−3      0)),((   0     −1)) ) =  (((−3     0)),((   0      −1)) ) I (true)
checkingA=(1003)A1=13(3001)()(4004)(1003)=13(3001)(3003)(3001)=(3001)I(true)

Leave a Reply

Your email address will not be published. Required fields are marked *