Menu Close

find-the-3-rd-derivative-of-x-5-ln-2x-using-the-Leibniz-theorem-




Question Number 83189 by john santu last updated on 28/Feb/20
find the 3^(rd)  derivative of   x^5  ln(2x) using the Leibniz theorem
findthe3rdderivativeofx5ln(2x)usingtheLeibniztheorem
Commented by jagoll last updated on 28/Feb/20
y = x^5  ln(2x)  y ′(x) = 5x^4  ln(2x) + ((2x^5 )/(2x))  y′(x) = 5x^4  ln(2x)+ x^4   y′′(x)= 20x^3  ln(2x)+ ((10x^4 )/(2x))+4x^3   y′′ (x) = 20x^3  ln(2x) + 9x^3   y′′′(x) = 60x^2  ln(2x) + ((40x^3 )/(2x))+27x^2   y′′′(x) = 60x^2  ln(2x) + 47x^2
y=x5ln(2x)y(x)=5x4ln(2x)+2x52xy(x)=5x4ln(2x)+x4y(x)=20x3ln(2x)+10x42x+4x3y(x)=20x3ln(2x)+9x3y(x)=60x2ln(2x)+40x32x+27x2y(x)=60x2ln(2x)+47x2
Commented by mr W last updated on 28/Feb/20
(x^5 ln (2x))^((3))   =x^5 ((2/x^3 ))+3(5x^4 )(−(1/x^2 ))+3(20x^3 )((1/x))+(60x^2 )ln (2x)  =2x^2 −15x^2 +60x^2 +60x^2  ln (2x)  =x^2 (47+60 ln (2x))
(x5ln(2x))(3)=x5(2x3)+3(5x4)(1x2)+3(20x3)(1x)+(60x2)ln(2x)=2x215x2+60x2+60x2ln(2x)=x2(47+60ln(2x))
Commented by mathmax by abdo last updated on 28/Feb/20
direct calculus f(x)=x^5 ln(2x) ⇒  f^((1)) (x)=5x^4 ln(2x) +x^5 ×(1/x) =5x^4 ln(2x)+x^4   f^((2)) (x)=20x^3 ln(2x)+5x^4 ×(1/x) +4x^3  =20x^3 ln(2x)+5x^3  +4x^3   =20x^3 ln(2x)+9x^3  ⇒f^((3)) (x)=60x^2 ln(2x)+20x^3 ×(1/x) +27x^2   =60x^2 ln(2x) +47 x^2  =x^2 {60ln(2x)+47}
directcalculusf(x)=x5ln(2x)f(1)(x)=5x4ln(2x)+x5×1x=5x4ln(2x)+x4f(2)(x)=20x3ln(2x)+5x4×1x+4x3=20x3ln(2x)+5x3+4x3=20x3ln(2x)+9x3f(3)(x)=60x2ln(2x)+20x3×1x+27x2=60x2ln(2x)+47x2=x2{60ln(2x)+47}
Commented by jagoll last updated on 28/Feb/20
what generally Leibniz theorem sir
whatgenerallyLeibniztheoremsir
Commented by jagoll last updated on 28/Feb/20
yes sir. thank you
yessir.thankyou
Commented by mathmax by abdo last updated on 29/Feb/20
if the functions f and g are C^n  on I⊂R (or C) we have  (f.g)^((n)) =Σ_(k=0) ^n  C_n ^k  f^((k)) g^((n−k) )  (leibniz formula for derivation)
ifthefunctionsfandgareCnonIR(orC)wehave(f.g)(n)=k=0nCnkf(k)g(nk)(leibnizformulaforderivation)

Leave a Reply

Your email address will not be published. Required fields are marked *