Menu Close

Find-the-all-asymtotes-of-the-curve-y-5x-2-2x-1-x-2-




Question Number 123407 by bemath last updated on 25/Nov/20
Find the all asymtotes of the  curve y = ((5x^2 +2x−1)/(x−2))
Findtheallasymtotesofthecurvey=5x2+2x1x2
Commented by EVIMENEBASSEY last updated on 25/Nov/20
    Find the all asymtotes of the  curve y = ((5x^2 +2x−1)/(x−2))  solution  y(x−2)=5x^2 +2x−1  horizontal asymtote =2  no horizontal asymtote.  but letting y=mx+c  (mx+c)(x−2)=5x^2 +2x−1  mx^2 −mx+xc−2c=5x^2 +2x−1  c=m=0    caddet
Findtheallasymtotesofthecurvey=5x2+2x1x2solutiony(x2)=5x2+2x1horizontalasymtote=2nohorizontalasymtote.butlettingy=mx+c(mx+c)(x2)=5x2+2x1mx2mx+xc2c=5x2+2x1c=m=0caddet
Commented by liberty last updated on 25/Nov/20
(i) vertical asymtotes : lim_(x→2)  y = lim_(x→2)  ((5x^2 +2x−1)/(x−2)) = ∞   we get vertical asymtotes x=2  (ii) horizontal asymtotes : lim_(x→±∞) y =lim_(x→±∞) ((5x^2 +2x−1)/(x−2))  clearly the limit does not exist so  the curve no horizontal asymtotes  (iii) we want find inclined asymtotes  y = kx + b where  { ((k=lim_(x→∞) (y/x)=lim_(x→∞) ((5x^2 +2x−1)/(x^2 −2x))=5)),((b=lim_(x→∞) (y−kx)=lim_(x→∞) (((5x^2 +2x−1)/(x−2))−5x))) :}   ⇒b = lim_(x→∞) (((5x^2 +2x−1−5x^2 +10x)/(x−2)))  ⇒b = lim_(x→∞) (((12x−1)/(x−2)))=12  thus straight line y = 5x+12 is  inclined asymtotes
(i)verticalasymtotes:limx2y=limx25x2+2x1x2=wegetverticalasymtotesx=2(ii)horizontalasymtotes:limx±y=limx±5x2+2x1x2clearlythelimitdoesnotexistsothecurvenohorizontalasymtotes(iii)wewantfindinclinedasymtotesy=kx+bwhere{k=limxyx=limx5x2+2x1x22x=5b=limx(ykx)=limx(5x2+2x1x25x)b=limx(5x2+2x15x2+10xx2)b=limx(12x1x2)=12thusstraightliney=5x+12isinclinedasymtotes
Commented by MJS_new last updated on 25/Nov/20
y=((p(x))/(q(x))) with p, q are polynomes and degree (p) ≥degree (q)  you can always find existing asymptotic lines  or curves by dividing the fraction  y=((7x+3)/(x−5))=7+((38)/(x−5)) ⇒ asymptotes  { ((x=5)),((y=7)) :}  y=((7x^2 +3)/(x−5))=7x+35+((178)/(x−5)) ⇒ asymptotes  { ((x=5)),((y=7x+35)) :}  y=((7x^3 +3)/(x^2 −5))=7x+((35x+3)/(x^2 −5)) ⇒ asymptotes  { ((x=±(√5))),((y=7x)) :}  asymptotic curves:  y=((7x^3 +3)/(x−5))=7x^2 +35x+175+((878)/(x−5)) ⇒ asymptotes  { ((x=5)),((y=7x^2 +35x+175)) :}  y=((7x^4 +3)/(x^2 −5))=7x^2 +35+((178)/(x^2 −5)) ⇒ asymptotes  { ((x=±(√5))),((y=7x^2 +35)) :}  ...
y=p(x)q(x)withp,qarepolynomesanddegree(p)degree(q)youcanalwaysfindexistingasymptoticlinesorcurvesbydividingthefractiony=7x+3x5=7+38x5asymptotes{x=5y=7y=7x2+3x5=7x+35+178x5asymptotes{x=5y=7x+35y=7x3+3x25=7x+35x+3x25asymptotes{x=±5y=7xasymptoticcurves:y=7x3+3x5=7x2+35x+175+878x5asymptotes{x=5y=7x2+35x+175y=7x4+3x25=7x2+35+178x25asymptotes{x=±5y=7x2+35
Commented by bemath last updated on 25/Nov/20
Commented by bemath last updated on 25/Nov/20
Commented by MJS_new last updated on 25/Nov/20
for y=((7x^4 +3)/(x^2 −5)) and y=7x^2 +35 you will have to  set up a different window. try  −4≤x≤4 and −100≤y≤300
fory=7x4+3x25andy=7x2+35youwillhavetosetupadifferentwindow.try4x4and100y300
Commented by bemath last updated on 25/Nov/20
yes sir.
yessir.
Answered by MJS_new last updated on 25/Nov/20
vertical asymptote x=2  y=5x+12+((23)/(x−2)) ⇒ asymptote y=5x+12
verticalasymptotex=2y=5x+12+23x2asymptotey=5x+12

Leave a Reply

Your email address will not be published. Required fields are marked *