Menu Close

Find-the-all-valid-value-of-x-x-2-4-x-4-




Question Number 172282 by BaliramSingh last updated on 25/Jun/22
Find the all valid value of   x  x^2  − (√(4+x)) = 4
$${Find}\:{the}\:{all}\:{valid}\:{value}\:{of}\:\:\:{x} \\ $$$${x}^{\mathrm{2}} \:−\:\sqrt{\mathrm{4}+{x}}\:=\:\mathrm{4} \\ $$
Answered by dumitrel last updated on 25/Jun/22
x^2 −4≥0;x+4≥0  x^2 −4=(√(4+x))=y  x^2 −y=4  y^2 −x=4⇒x^2 −y^2 +(x−y)=0  (x−y)(x+y+1)=0  x=y⇒x^2 −x−4=0⇒x=((1+(√(17)))/2)  x+y+1=0⇒x^2 +x−3=0  x=((−1−(√(13)))/2)
$${x}^{\mathrm{2}} −\mathrm{4}\geqslant\mathrm{0};{x}+\mathrm{4}\geqslant\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}=\sqrt{\mathrm{4}+{x}}={y} \\ $$$${x}^{\mathrm{2}} −{y}=\mathrm{4} \\ $$$${y}^{\mathrm{2}} −{x}=\mathrm{4}\Rightarrow{x}^{\mathrm{2}} −{y}^{\mathrm{2}} +\left({x}−{y}\right)=\mathrm{0} \\ $$$$\left({x}−{y}\right)\left({x}+{y}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}={y}\Rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{4}=\mathrm{0}\Rightarrow{x}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$${x}+{y}+\mathrm{1}=\mathrm{0}\Rightarrow{x}^{\mathrm{2}} +{x}−\mathrm{3}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{1}−\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$
Commented by BaliramSingh last updated on 25/Jun/22
Thanks sir
$${Thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *