Question Number 39172 by Rio Mike last updated on 03/Jul/18
$${find}\:{the}\:{angle}\:{between}\: \\ $$$$\mathrm{3}{i}\:−\:\mathrm{4}{j}\:{and}\:{i}\:−\:{j} \\ $$
Commented by math khazana by abdo last updated on 03/Jul/18
$${let}\:\overset{\rightarrow} {{u}}=\mathrm{3}{i}−\mathrm{4}{j}\:\Rightarrow{u}\left(\mathrm{3},−\mathrm{4}\right) \\ $$$$\overset{\rightarrow} {{v}}={i}−{j}?\Rightarrow\overset{\rightarrow} {{v}}\left(\mathrm{1},−\mathrm{1}\right) \\ $$$${cos}\left(\overset{\rightarrow} {{u}},\overset{\rightarrow} {{v}}\right)\:=\:\frac{\overset{\rightarrow} {{u}}\:.\overset{\rightarrow} {{v}}}{\mid\mid\overset{\rightarrow} {{u}}\mid\mid.\mid\mid\overset{\rightarrow} {{v}}\mid\mid}\:=\:\frac{\left.\mathrm{3}×\mathrm{1}\right)\:+\left(\mathrm{4}\right)}{\mathrm{5}\sqrt{\mathrm{2}}}\:=\frac{\mathrm{7}}{\mathrm{5}\sqrt{\mathrm{2}}} \\ $$$${sin}\left(\overset{\rightarrow} {{u}}\:,\overset{\rightarrow} {{v}}\right)\:=\frac{{det}\:\left({u},{v}\right)}{\mid\mid{u}\mid\mid.\mid\mid{v}\mid\mid}\:=\frac{\begin{vmatrix}{\mathrm{3}\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{4}\:\:\:−\mathrm{1}}\end{vmatrix}}{\mathrm{5}\sqrt{\mathrm{2}}}\:=\:\frac{\mathrm{1}}{\mathrm{5}\sqrt{\mathrm{2}}}\:\Rightarrow \\ $$$${tan}\left({u},{v}\right)\:=\:\frac{\mathrm{1}}{\mathrm{7}}\:\Rightarrow\:\theta\:={arctan}\left(\frac{\mathrm{1}}{\mathrm{7}}\right). \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
$${vector}\:\mathrm{3}{i}−\mathrm{4}{j}\:\:{make}\:{angle}\:\alpha\:{with}\:{x}\:{axis}\: \\ $$$${so}\:{m}_{\mathrm{1}} ={tan}\alpha=\frac{−\mathrm{4}}{\mathrm{3}} \\ $$$${m}_{\mathrm{2}} ={tan}\beta=\frac{−\mathrm{1}}{\mathrm{1}} \\ $$$${tan}\theta=\frac{{m}_{\mathrm{1}} \sim{m}_{\mathrm{2}} }{\mathrm{1}+{m}_{\mathrm{1}} {m}_{\mathrm{2}} }=\frac{−\mathrm{1}+\frac{\mathrm{4}}{\mathrm{3}}}{\mathrm{1}+\frac{\mathrm{4}}{\mathrm{3}}}=\frac{\frac{\mathrm{1}}{\mathrm{3}}}{\frac{\mathrm{7}}{\mathrm{3}}}=\frac{\mathrm{1}}{\mathrm{7}} \\ $$$$\theta={tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{7}}\right) \\ $$$${cos}\theta=\frac{\mathrm{7}}{\:\sqrt{\mathrm{50}}\:} \\ $$$$ \\ $$$${another}\:{approach}… \\ $$$${cos}\theta=\frac{\mathrm{3}×\mathrm{1}+\left(−\mathrm{4}\right)×\left(−\mathrm{1}\right)}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(−\mathrm{4}\right)^{\mathrm{2}} }\:×\sqrt{\mathrm{1}^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{7}}{\:\sqrt{\mathrm{50}}} \\ $$