Menu Close

find-the-angle-between-3i-4j-and-i-j-




Question Number 39172 by Rio Mike last updated on 03/Jul/18
find the angle between   3i − 4j and i − j
findtheanglebetween3i4jandij
Commented by math khazana by abdo last updated on 03/Jul/18
let u^→ =3i−4j ⇒u(3,−4)  v^→ =i−j?⇒v^→ (1,−1)  cos(u^→ ,v^→ ) = ((u^→  .v^→ )/(∣∣u^→ ∣∣.∣∣v^→ ∣∣)) = ((3×1) +(4))/(5(√2))) =(7/(5(√2)))  sin(u^→  ,v^→ ) =((det (u,v))/(∣∣u∣∣.∣∣v∣∣)) =( determinant (((3      1)),((−4   −1)))/(5(√2))) = (1/(5(√2))) ⇒  tan(u,v) = (1/7) ⇒ θ =arctan((1/7)).
letu=3i4ju(3,4)v=ij?v(1,1)cos(u,v)=u.v∣∣u∣∣.∣∣v∣∣=3×1)+(4)52=752sin(u,v)=det(u,v)∣∣u∣∣.∣∣v∣∣=|3141|52=152tan(u,v)=17θ=arctan(17).
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
vector 3i−4j  make angle α with x axis   so m_1 =tanα=((−4)/3)  m_2 =tanβ=((−1)/1)  tanθ=((m_1 ∼m_2 )/(1+m_1 m_2 ))=((−1+(4/3))/(1+(4/3)))=((1/3)/(7/3))=(1/7)  θ=tan^(−1) ((1/7))  cosθ=(7/( (√(50)) ))    another approach...  cosθ=((3×1+(−4)×(−1))/( (√(3^2 +(−4)^2 )) ×(√(1^2 +(−1)^2 ))))  =(7/( (√(50))))
vector3i4jmakeangleαwithxaxissom1=tanα=43m2=tanβ=11tanθ=m1m21+m1m2=1+431+43=1373=17θ=tan1(17)cosθ=750anotherapproachcosθ=3×1+(4)×(1)32+(4)2×12+(1)2=750

Leave a Reply

Your email address will not be published. Required fields are marked *