Menu Close

find-the-angle-between-3y-x-3-1-3-2-y-x-2-help-me-sir-




Question Number 112902 by mohammad17 last updated on 10/Sep/20
find the angle between 3y+(x/( (√3)))=1 , ((√3)/2)y−x=2  help me sir
findtheanglebetween3y+x3=1,32yx=2helpmesir
Answered by bemath last updated on 10/Sep/20
m_1 = ((−(1/( (√3))))/3)=−(1/(3(√3))) ; m_2 = (1/((((√3)/2))))=(2/( (√3)))  say the angle between both line  is α then tan α=∣((m_2 −m_1 )/(1+m_2 .m_1 ))∣  tan α=∣(((6+1)/( 3(√3)))/(1−(2/9)))∣ = (((21)/( (√3)))/7) = (3/( (√3)))  α = tan^(−1) ((√3) ) = 60°
m1=133=133;m2=1(32)=23saytheanglebetweenbothlineisαthentanα=∣m2m11+m2.m1tanα=∣6+133129=2137=33α=tan1(3)=60°
Commented by mohammad17 last updated on 10/Sep/20
thank you sir
thankyousir
Answered by mathmax by abdo last updated on 10/Sep/20
3y+(x/( (√3))) =1 ⇒3(√3)y +x =(√3) ⇒x+3(√3)y−(√3)=0  ⇒the director verctor is u^→ (−3(√3),1)  ((√3)/2)y−x =2 ⇒(√3)y−2x =4 ⇒−2x+(√3)y−4=0 ⇒2x−(√3)y+4=0 ⇒  the director vector is v^→ ((√3),2)  cos(u,v) =((u.v)/(∣u∣.∣v∣)) and sin(u,v) =((det(u,v))/(∣u∣.∣v∣)) ⇒tan(u,v) =((det(u,v))/(u.v))  =( determinant (((−3(√3)        (√3))),((1                    2)))/((−3(√3)).(√3)+1×2)) =((−7(√3))/(−7)) =(√3)  we have tan(u,v) =(√3) ⇒(u,v) =(u,v) =(π/3)[π]
3y+x3=133y+x=3x+33y3=0thedirectorverctorisu(33,1)32yx=23y2x=42x+3y4=02x3y+4=0thedirectorvectorisv(3,2)cos(u,v)=u.vu.vandsin(u,v)=det(u,v)u.vtan(u,v)=det(u,v)u.v=|33312|(33).3+1×2=737=3wehavetan(u,v)=3(u,v)=(u,v)=π3[π]
Commented by mohammad17 last updated on 10/Sep/20
thank you sir
thankyousir
Commented by mathmax by abdo last updated on 11/Sep/20
you are welcome
youarewelcome
Answered by Dwaipayan Shikari last updated on 10/Sep/20
3y+(x/( (√3)))=1            ((√3)/2)y−x=2⇒y=(2/( (√3)))x+(4/( (√3)))  y=−(x/(3(√3)))+(1/3)  tanθ=∣((−(1/(3(√3)))−(2/( (√3))))/(1−(2/9)))∣=(√3)  θ=(π/3)
3y+x3=132yx=2y=23x+43y=x33+13tanθ=∣13323129∣=3θ=π3
Commented by mohammad17 last updated on 10/Sep/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *