Menu Close

Find-the-angle-between-the-curves-1-x-2-y-1-y-and-x-3-2-2y-2-x-2-y-2-a-2-2-and-x-2-y-2-a-2-




Question Number 58097 by rahul 19 last updated on 17/Apr/19
Find the angle between the curves:  1)x^2 y=1−y and x^3 =2−2y.  2) x^2 +y^2 =a^2 (√2) and x^2 −y^2 =a^2 .
Findtheanglebetweenthecurves:1)x2y=1yandx3=22y.2)x2+y2=a22andx2y2=a2.
Answered by tanmay last updated on 17/Apr/19
1)x^2 y=1−y  y=(1/(1+x^2 ))  x^3 =2−2y  x^3 =2−2((1/(1+x^2 )))  x^3 (1+x^2 )=2(1+x^2 )−2  x^3 +x^5 =2x^2   x^2 (x+x^3 −2)=0  x^2 {(x−1)+x^3 −1}=0  x^2 (x−1)(1+x^2 +x+1)=0  x^2 (x−1)(x^2 +x+2)=0  x=0  x=1  x=((−1±(√(1−4×1×2)))/(2×1))  x=((−1±(√7) i)/2) ←not feasible    first curve y=(1/(1+x^2 ))  (dy/dx)=((−1)/((1+x^2 )^2 ))×2x   m_1 =((−2×1)/((1+1)^2 ))=((−1)/2)  2y=2−x^3   y=1−(x^3 /2)  →(dy/dx)=((−3)/2)×x^2 =((−3x^2 )/2)        when point (x=1)    m_2 =((−3)/2) [point x=1]  tanθ_2 =((((−1)/2)+(3/2))/(1+(((−1)/2))(((−3)/2))))    =((2/2)/(1+(3/4)))=(4/7)→θ_2 =tan^(−1) ((4/7))  discussion...  let two curve intesect at point(x_1 ,y_1 )  then angle between two tangents at that  point(x_1 ,y_1 ) is the angle between two curves
1)x2y=1yy=11+x2x3=22yx3=22(11+x2)x3(1+x2)=2(1+x2)2x3+x5=2x2x2(x+x32)=0x2{(x1)+x31}=0x2(x1)(1+x2+x+1)=0x2(x1)(x2+x+2)=0x=0x=1x=1±14×1×22×1x=1±7i2notfeasiblefirstcurvey=11+x2dydx=1(1+x2)2×2xm1=2×1(1+1)2=122y=2x3y=1x32dydx=32×x2=3x22whenpoint(x=1)m2=32[pointx=1]tanθ2=12+321+(12)(32)=221+34=47θ2=tan1(47)discussionlettwocurveintesectatpoint(x1,y1)thenanglebetweentwotangentsatthatpoint(x1,y1)istheanglebetweentwocurves
Commented by rahul 19 last updated on 17/Apr/19
Thank u sir!
Thankusir!
Commented by tanmay last updated on 18/Apr/19
most welcome rahul...
mostwelcomerahul
Answered by tanmay last updated on 17/Apr/19
2) x^2 +y^2 =a^2 (√2)        x^2 −y^2 =a^2   2x^2 =a^2 (1+(√2) )  x^2 =((a^2 (1+(√2) ))/2)→x=a×(√(((√2) +1)/2))  y^2 =a^2 (√2) −((a^2 (1+(√2) ))/2)  y^2 =((2(√2) a^2 −a^2 −(√2) a^2 )/2)  y^2 =((a^2 ((√2) −1))/2)→y=a(√((((√2) −1)/2) ))  first curve  x^2 +y^2 =a^2 (√2)   2x+2y×(dy/dx)=0  (dy/dx)=((−x)/y)→((−1×(a×(√(((√2) +1)/2)) ))/(a×(√(((√2) −1)/2))))  m_1 =−1×(√(((√2) +1)/( (√2) −1))) =−1×((((√2) +1)/1))  second curve..  x^2 −y^2 =a^2   y^2 =x^2 −a^2   y^2 =a^2 (((1+(√2))/2))−a^2   y^2 =((a^2 ((√2) −1))/2)  now x^2 −y^2 =a^2   2x−2y×(dy/dx)=0  (dy/dx)=(x/y)→m_2 =((a×(√(((√2) +1)/2)))/(a(√(((√2) −1)/2))))=(√2) +1  tanθ=((m_2 −m_1 )/(1+m_1 m_2 ))=((2((√2) +1))/(1+((√2) +1)×{−1((√(2 )) +1)}))  tsnθ=((2((√2) +1))/(1−(3+2(√2) )))=((2((√2) +1))/(1−3−2(√2)))=((2((√2) +1))/(−2(1+(√2) )))=−1  tanθ=−1=tan135^o   θ=135^o
2)x2+y2=a22x2y2=a22x2=a2(1+2)x2=a2(1+2)2x=a×2+12y2=a22a2(1+2)2y2=22a2a22a22y2=a2(21)2y=a212firstcurvex2+y2=a222x+2y×dydx=0dydx=xy1×(a×2+12)a×212m1=1×2+121=1×(2+11)secondcurve..x2y2=a2y2=x2a2y2=a2(1+22)a2y2=a2(21)2nowx2y2=a22x2y×dydx=0dydx=xym2=a×2+12a212=2+1tanθ=m2m11+m1m2=2(2+1)1+(2+1)×{1(2+1)}tsnθ=2(2+1)1(3+22)=2(2+1)1322=2(2+1)2(1+2)=1tanθ=1=tan135oθ=135o
Commented by rahul 19 last updated on 17/Apr/19
Ans given is 45°.
Commented by MJS last updated on 17/Apr/19
without going through above workings:  the angle between 2 curves = the angle  between their tangents. the angle between  2 straight lines is not unique, it′s either  α or 180°−α ⇒ 45° is ok and 135° is ok too
withoutgoingthroughaboveworkings:theanglebetween2curves=theanglebetweentheirtangents.theanglebetween2straightlinesisnotunique,itseitherαor180°α45°isokand135°isoktoo
Commented by tanmay last updated on 18/Apr/19
thank you sir...
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *