Menu Close

Find-the-angle-between-the-lines-r-1-0-4-2-1-1-r-1-0-4-3-0-1-




Question Number 175279 by naka3546 last updated on 26/Aug/22
Find  the  angle  between  the  lines  r =  ((1),(0),(4) )  + λ ((2),((−1)),((−1)) )  r =  ((1),(0),(4) )  + λ ((3),(0),(1) )
Findtheanglebetweenthelinesr=(104)+λ(211)r=(104)+λ(301)
Answered by mahdipoor last updated on 26/Aug/22
point A:   r_1 (a)=r_2 (b) ⇒ (((1+2a)),((0−a)),((4−a)) )= (((1+3b)),(0),((4+b)) )  a=0 , b=0 ⇒⇒A= ((1),(0),(4) )  point B : r_1 (1)= ((3),((−1)),(3) )  point C : r_2 (1)= ((4),(0),(5) )  ΔABC :   a=BC=(√((3−4)^2 +(−1−0)^2 +(3−5)^2 ))=(√6)  b=AC=(√(10))  c=AB=(√6)  ⇒b^2 +c^2 −2bc.cosA=a^2 ⇒  cosA=((6−10−6)/(−2.(√(10)).(√6)))=(5/( 2(√(15))))=((√(15))/6)  ⇒⇒A=cos^(−1) (((√(15))/6))
pointA:r1(a)=r2(b)(1+2a0a4a)=(1+3b04+b)a=0,b=0⇒⇒A=(104)pointB:r1(1)=(313)pointC:r2(1)=(405)ΔABC:a=BC=(34)2+(10)2+(35)2=6b=AC=10c=AB=6b2+c22bc.cosA=a2cosA=61062.10.6=5215=156⇒⇒A=cos1(156)
Commented by naka3546 last updated on 26/Aug/22
Thank  you
Thankyou
Answered by MJS_new last updated on 26/Aug/22
cos α =((∣p^→ ∗q^→ ∣)/(∣p^→ ∣×∣q^→ ∣))  with p^→ ∗q^→ = ((p_1 ),(p_2 ),((...)),(p_n ) )  ∗ ((q_1 ),(q_2 ),((...)),(w_n ) )  = p_1 q_1 +p_2 q_2 +...+p_n q_n
cosα=pqp×qwithpq=(p1p2pn)(q1q2wn)=p1q1+p2q2++pnqn
Answered by MikeH last updated on 26/Aug/22
d_1  = 2i−j−k and d_2  = 3i+k  ⇒ cos θ = (((2i−j−k).(3i+k))/( (√(2^2 +1^2 +1^2 ))×(√(3^2 +1^2 )))) = (5/( (√(6×10)))) = (5/( (√(60))))  ⇒ θ = cos^(−1) ((5/( (√(60)))))
d1=2ijkandd2=3i+kcosθ=(2ijk).(3i+k)22+12+12×32+12=56×10=560θ=cos1(560)

Leave a Reply

Your email address will not be published. Required fields are marked *