Menu Close

Find-the-arc-lenght-of-the-function-y-2-x-3-a-where-a-is-a-constant-for-0-x-7a-3-




Question Number 145646 by physicstutes last updated on 06/Jul/21
Find the arc lenght of the function y^2  = (x^3 /a) where a is a constant for  0≤x≤((7a)/3)
Findthearclenghtofthefunctiony2=x3awhereaisaconstantfor0x7a3
Answered by Olaf_Thorendsen last updated on 06/Jul/21
y^2  = (x^3 /a)  y = (x^(3/2) /( (√a)))  y′ = ((3(√x))/( 2(√a)))  L = ∫_0 ^((7a)/3) (√(1+y′^2 ))dx  L = ∫_0 ^((7a)/3) (√(1+((9x)/(4a))))dx  L = ((8a)/(27))[(1+((9x)/(4a)))^(3/2) ]_0 ^((7a)/3)   L = ((8a)/(27))(((25a)/4)−1) = ((2a)/(27))(25a−4)
y2=x3ay=x3/2ay=3x2aL=07a31+y2dxL=07a31+9x4adxL=8a27[(1+9x4a)3/2]07a3L=8a27(25a41)=2a27(25a4)
Commented by physicstutes last updated on 06/Jul/21
I appreciate
Iappreciate
Commented by gsk2684 last updated on 07/Jul/21
given expression is symmetric   about x axis. final anser is 2L. check   it once sir.
givenexpressionissymmetricaboutxaxis.finalanseris2L.checkitoncesir.

Leave a Reply

Your email address will not be published. Required fields are marked *