Question Number 159958 by mr W last updated on 22/Nov/21

Commented by MJS_new last updated on 23/Nov/21

Commented by mr W last updated on 23/Nov/21

Commented by MJS_new last updated on 23/Nov/21

Answered by mr W last updated on 23/Nov/21

Commented by mr W last updated on 23/Nov/21
![let A=area, P=perimeter due to symmetry we only need to treat the quarter in the first quadrant. the curve can be described as x=a cos^3 θ y=b sin^3 θ with parameter θ∈[0,(π/2)] (A/4)=∫_0 ^a ydx=∫_0 ^(π/2) b sin^3 θ 3a cos^2 θ sin θ dθ (A/4)=3ab∫_0 ^(π/2) sin^4 θ cos^2 θdθ (A/4)=((3ab)/8)∫_0 ^(π/2) (1+cos 2θ) sin^2 2θ dθ (A/4)=((3ab)/8)∫_0 ^(π/2) ((1/2)+(1/2)cos 4θ+cos 2θ sin^2 2θ) dθ (A/4)=((3ab)/8)[(θ/2)+(1/8)sin 4θ+((sin^3 2θ)/6)]_0 ^(π/2) (A/4)=((3ab)/8)×(π/4) ⇒A=((3πab)/8) (P/4)=∫_0 ^a (√(1+(y′)^2 ))dx=∫_0 ^(π/2) (√(1+(−((3b sin^2 θ cos θ)/(3a cos^2 θ sin θ)))^2 )) 3a cos^2 θ sin θ dθ (P/4)=3∫_0 ^(π/2) (√(a^2 cos^2 θ+b^2 sin^2 θ)) cos θ sin θ dθ (P/4)=−(3/4)∫_0 ^(π/2) (√((a^2 −b^2 )cos^2 θ+b^2 )) d(cos 2θ) (P/4)=−(3/4)∫_0 ^(π/2) (√(((a^2 −b^2 )/2)cos 2θ+((a^2 +b^2 )/2))) d(cos 2θ) (P/4)=−(1/(a^2 −b^2 ))[(((a^2 −b^2 )/2)cos 2θ+((a^2 +b^2 )/2))^(3/2) ]_0 ^(π/2) (P/4)=(1/(a^2 −b^2 ))[(((a^2 −b^2 )/2)+((a^2 +b^2 )/2))^(3/2) −(((a^2 +b^2 )/2)−((a^2 −b^2 )/2))^(3/2) ] (P/4)=((a^3 −b^3 )/(a^2 −b^2 ))=((a^2 +ab+b^2 )/(a+b)) ⇒P=((4(a^2 +ab+b^2 ))/(a+b))](https://www.tinkutara.com/question/Q160000.png)