Menu Close

find-the-area-and-perimeter-of-x-a-2-3-y-b-2-3-1-




Question Number 159958 by mr W last updated on 22/Nov/21
find the area and perimeter of  ((x/a))^(2/3) +((y/b))^(2/3) =1
findtheareaandperimeterof(xa)23+(yb)23=1
Commented by MJS_new last updated on 23/Nov/21
y=±(b/a)(a^(2/3) −x^(2/3) )^(3/2)   we can solve the integral for the area  4(b/q)∫_0 ^a (a^(2/3) −x^(2/3) )^(3/2) dx=((3π)/8)ab  y′=±((b(√(a^(2/3) −x^(2/3) )))/(ax^(1/3) ))  we can also solve the integral for the perimeter  4∫_0 ^a (√(1+(y′)^2 ))dx=4((a^2 +ab+b^2 )/(a+b))
y=±ba(a2/3x2/3)3/2wecansolvetheintegralforthearea4bqa0(a2/3x2/3)3/2dx=3π8aby=±ba2/3x2/3ax1/3wecanalsosolvetheintegralfortheperimeter4a01+(y)2dx=4a2+ab+b2a+b
Commented by mr W last updated on 23/Nov/21
thanks alot sir!  i got the same result using parametric  way.
thanksalotsir!igotthesameresultusingparametricway.
Commented by MJS_new last updated on 23/Nov/21
I corrected it
Icorrectedit
Answered by mr W last updated on 23/Nov/21
Commented by mr W last updated on 23/Nov/21
let A=area, P=perimeter  due to symmetry we only need to  treat the quarter in the first quadrant.  the curve can be described as  x=a cos^3  θ  y=b sin^3  θ  with parameter θ∈[0,(π/2)]  (A/4)=∫_0 ^a ydx=∫_0 ^(π/2) b sin^3  θ 3a cos^2  θ sin θ dθ  (A/4)=3ab∫_0 ^(π/2) sin^4  θ cos^2  θdθ  (A/4)=((3ab)/8)∫_0 ^(π/2) (1+cos 2θ) sin^2  2θ dθ  (A/4)=((3ab)/8)∫_0 ^(π/2) ((1/2)+(1/2)cos 4θ+cos 2θ sin^2  2θ) dθ  (A/4)=((3ab)/8)[(θ/2)+(1/8)sin 4θ+((sin^3  2θ)/6)]_0 ^(π/2)   (A/4)=((3ab)/8)×(π/4)  ⇒A=((3πab)/8)  (P/4)=∫_0 ^a (√(1+(y′)^2 ))dx=∫_0 ^(π/2) (√(1+(−((3b sin^2  θ cos θ)/(3a cos^2  θ sin θ)))^2 )) 3a cos^2  θ sin θ dθ  (P/4)=3∫_0 ^(π/2) (√(a^2 cos^2  θ+b^2  sin^2  θ))  cos θ sin θ dθ  (P/4)=−(3/4)∫_0 ^(π/2) (√((a^2 −b^2 )cos^2  θ+b^2 )) d(cos 2θ)  (P/4)=−(3/4)∫_0 ^(π/2) (√(((a^2 −b^2 )/2)cos 2θ+((a^2 +b^2 )/2))) d(cos 2θ)  (P/4)=−(1/(a^2 −b^2 ))[(((a^2 −b^2 )/2)cos 2θ+((a^2 +b^2 )/2))^(3/2) ]_0 ^(π/2)   (P/4)=(1/(a^2 −b^2 ))[(((a^2 −b^2 )/2)+((a^2 +b^2 )/2))^(3/2) −(((a^2 +b^2 )/2)−((a^2 −b^2 )/2))^(3/2) ]  (P/4)=((a^3 −b^3 )/(a^2 −b^2 ))=((a^2 +ab+b^2 )/(a+b))  ⇒P=((4(a^2 +ab+b^2 ))/(a+b))
letA=area,P=perimeterduetosymmetryweonlyneedtotreatthequarterinthefirstquadrant.thecurvecanbedescribedasx=acos3θy=bsin3θwithparameterθ[0,π2]A4=0aydx=0π2bsin3θ3acos2θsinθdθA4=3ab0π2sin4θcos2θdθA4=3ab80π2(1+cos2θ)sin22θdθA4=3ab80π2(12+12cos4θ+cos2θsin22θ)dθA4=3ab8[θ2+18sin4θ+sin32θ6]0π2A4=3ab8×π4A=3πab8P4=0a1+(y)2dx=0π21+(3bsin2θcosθ3acos2θsinθ)23acos2θsinθdθP4=30π2a2cos2θ+b2sin2θcosθsinθdθP4=340π2(a2b2)cos2θ+b2d(cos2θ)P4=340π2a2b22cos2θ+a2+b22d(cos2θ)P4=1a2b2[(a2b22cos2θ+a2+b22)32]0π2P4=1a2b2[(a2b22+a2+b22)32(a2+b22a2b22)32]P4=a3b3a2b2=a2+ab+b2a+bP=4(a2+ab+b2)a+b

Leave a Reply

Your email address will not be published. Required fields are marked *