Menu Close

Find-the-area-bounded-by-the-curve-y-3x-2-2x-3-the-x-axis-and-the-line-x-5-and-x-2-




Question Number 32775 by NECx last updated on 02/Apr/18
Find the area bounded by the  curve y=3x^2 +2x−3,the x axis  and the line x=5 and x=2
Findtheareaboundedbythecurvey=3x2+2x3,thexaxisandthelinex=5andx=2
Answered by MJS last updated on 02/Apr/18
1. check the zeros  x^2 +(2/3)x−1=0  x=−(1/3)±(√((1/9)+1))=−(1/3)±((√(10))/3)  x_1 ≈−1.39 and x_2 ≈.72 are both  inside [−5;2]⇒changes of sign    2. area:  x<x_1 ⇒f(x)>0  x∈]x_1 ;x_2 [⇒f(x)<0  x>x_2 ⇒f(x)>0  ∫_(−5) ^x_1  f(x)dx−∫_x_1  ^x_2  f(x)dx+∫_x_2  ^2 f(x)dx=  =F(x)∣_(−5) ^x_1  −F(x)∣_x_1  ^x_2  +F(x)∣_x_2  ^2 =       [F(x)=x^3 +x^2 −3x]  =91+((80(√(10)))/(27))
1.checkthezerosx2+23x1=0x=13±19+1=13±103x11.39andx2.72arebothinside[5;2]changesofsign2.area:x<x1f(x)>0x]x1;x2[f(x)<0x>x2f(x)>0x15f(x)dxx2x1f(x)dx+2x2f(x)dx==F(x)x15F(x)x2x1+F(x)2x2=[F(x)=x3+x23x]=91+801027
Commented by MJS last updated on 02/Apr/18
no problem, posted a new answer
noproblem,postedanewanswer
Commented by NECx last updated on 02/Apr/18
I′m so sorry... I made a typo error  the lines are x=−5 and x=2.
ImsosorryImadeatypoerrorthelinesarex=5andx=2.
Commented by Joel578 last updated on 03/Apr/18
You just set the integral  A = ∫_(−5) ^((−1 − (√(10)))/3)  f(x) dx + ∫_((−1 + (√(10)))/3) ^((−1 − (√(10)))/3)  f(x) dx + ∫_((−1 + (√(10)))/3) ^2   f(x) dx
YoujustsettheintegralA=11035f(x)dx+11031+103f(x)dx+21+103f(x)dx
Commented by MJS last updated on 02/Apr/18
the middle integral is negative,  for the area you need ∫∣f(x)∣, so  it′s ∫_(−5) ^(−(1/3)−((√(10))/3)) f(x)dx−∫_(−(1/3)−((√(10))/3)) ^(−(1/3)+((√(10))/3)) f(x)dx+∫_(−(1/3)+((√(10))/3)) ^2 f(x)dx  and that′s just what I did
themiddleintegralisnegative,fortheareayouneedf(x),soits131035f(x)dx13+10313103f(x)dx+213+103f(x)dxandthatsjustwhatIdid
Commented by Joel578 last updated on 03/Apr/18
You are right. It′s typo. I have corrected it
Youareright.Itstypo.Ihavecorrectedit

Leave a Reply

Your email address will not be published. Required fields are marked *