Question Number 173599 by Mastermind last updated on 14/Jul/22
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{graph} \\ $$$$\mathrm{y}=\mathrm{x}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{y}=\mathrm{2}−\mathrm{x}^{\mathrm{2}} \:\mathrm{for}\:\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{2}. \\ $$
Commented by kaivan.ahmadi last updated on 14/Jul/22
$${x}^{\mathrm{2}} =\mathrm{2}−{x}^{\mathrm{2}} \Rightarrow{x}=\pm\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{2}−{x}^{\mathrm{2}} −{x}^{\mathrm{2}} \right){dx}=\left(−\frac{\mathrm{2}}{\mathrm{3}}{x}^{\mathrm{3}} +\mathrm{2}{x}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} \:= \\ $$$$\left(−\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{2}\right)−\left(\mathrm{0}\right)=\frac{\mathrm{4}}{\mathrm{3}} \\ $$