Menu Close

Find-the-area-bounded-by-y-x-2-x-4-x-0-y-0-and-x-3-




Question Number 61986 by necx1 last updated on 13/Jun/19
Find the area bounded by y(x+2)=x^4 ,  x=0,y=0 and x=3
Findtheareaboundedbyy(x+2)=x4,x=0,y=0andx=3
Answered by mr W last updated on 13/Jun/19
y=(x^4 /(x+2))  A=∫_0 ^3 (x^4 /(x+2)) dx  A=∫_0 ^3 (((x+2)(x−2)(x^2 +4)+16)/(x+2)) dx  A=∫_0 ^3 [(x−2)(x^2 +4)+((16)/(x+2))] dx  A=∫_0 ^3 [x^3 −2x^2 +4x−8+((16)/(x+2))] dx  A=[(1/4)x^4 −(2/3)x^3 +2x^2 −8x+16 ln (x+2)]_0 ^3   A=[(1/4)3^4 −(2/3)3^3 +2×3^2 −8×3+16 ln ((3+2)/2)]  A=[−((15)/4)+16 ln (5/2)]=10.91
y=x4x+2A=03x4x+2dxA=03(x+2)(x2)(x2+4)+16x+2dxA=03[(x2)(x2+4)+16x+2]dxA=03[x32x2+4x8+16x+2]dxA=[14x423x3+2x28x+16ln(x+2)]03A=[14342333+2×328×3+16ln3+22]A=[154+16ln52]=10.91
Commented by necx1 last updated on 13/Jun/19
Thank you so much.
Thankyousomuch.

Leave a Reply

Your email address will not be published. Required fields are marked *