Menu Close

find-the-area-bounded-inner-the-curve-r-4-2cos-and-outer-the-curve-r-6-2cos-




Question Number 102369 by bobhans last updated on 08/Jul/20
find the area bounded inner the curve  r = 4−2cos θ and outer the curve r = 6+2cos θ
findtheareaboundedinnerthecurver=42cosθandouterthecurver=6+2cosθ
Answered by Ar Brandon last updated on 08/Jul/20
Area , A=∫_0 ^(2π) ∫_(4−2cosθ) ^(6+2cosθ) rdrdθ=∫_0 ^(2π) [(r^2 /2)]_(4−2cosθ) ^(6+2cosθ) dθ  ⇒A=(1/2)∫_0 ^(2π) {(6+2cosθ)^2 −(4−2cosθ)^2 }dθ           =(1/2)∫_0 ^(2π) {(36+24cosθ+4cos^2 θ)−(16−16cosθ+4cos^2 θ)}dθ           =(1/2)∫_0 ^(2π) (20+40cosθ)dθ=[((20θ+40sinθ)/2)]_0 ^(2π)            =20π square units    Don′t really know if I′ve done it in the right way.  Please let me know what you think.
Area,A=02π42cosθ6+2cosθrdrdθ=02π[r22]42cosθ6+2cosθdθA=1202π{(6+2cosθ)2(42cosθ)2}dθ=1202π{(36+24cosθ+4cos2θ)(1616cosθ+4cos2θ)}dθ=1202π(20+40cosθ)dθ=[20θ+40sinθ2]02π=20πsquareunitsDontreallyknowifIvedoneitintherightway.Pleaseletmeknowwhatyouthink.
Commented by mr W last updated on 09/Jul/20
you are right. i misread, because this  is how the question is displayed on  my device:
youareright.imisread,becausethisishowthequestionisdisplayedonmydevice:
Commented by mr W last updated on 08/Jul/20
A=∫_0 ^(2π) ∫_(4−2cosθ) ^6 rdrdθ
A=02π42cosθ6rdrdθ
Commented by Ar Brandon last updated on 08/Jul/20
Why the 6 at the upper bound, mr W ?
Commented by mr W last updated on 09/Jul/20
Commented by mr W last updated on 09/Jul/20
i misinterpreted as from curve  r=4−2 cos θ to curve r=6.
imisinterpretedasfromcurver=42cosθtocurver=6.
Commented by bobhans last updated on 09/Jul/20
sir why ∫_0 ^(2π)  ? i think ∫_0 ^π  ?
sirwhy2π0?ithinkπ0?
Commented by bobhans last updated on 09/Jul/20
Commented by Ar Brandon last updated on 09/Jul/20
OK Sir
Commented by Ar Brandon last updated on 09/Jul/20
You′re heading somewhere mr Bobhans. I think you′re  making a point there. Let′s see;  Mathematically inner the curve 4−2cosθ implies  4−2cosθ<r  and outer the curve 6+2cosθ implies  6+2cosθ>r  Therefore at points of intersection r=r  ⇒4−2cosθ=6+2cosθ ⇒cosθ=((−1)/2)  ⇒θ_1 =(4/3)π , θ_2 =(2/3)π
YoureheadingsomewheremrBobhans.Ithinkyouremakingapointthere.Letssee;Mathematicallyinnerthecurve42cosθimplies42cosθ<randouterthecurve6+2cosθimplies6+2cosθ>rThereforeatpointsofintersectionr=r42cosθ=6+2cosθcosθ=12θ1=43π,θ2=23π
Commented by Ar Brandon last updated on 09/Jul/20
And 4−2cosθ<r<6+2cosθ
And42cosθ<r<6+2cosθ
Commented by bemath last updated on 09/Jul/20
Commented by 1549442205 last updated on 09/Jul/20
If the figure is bounded by   { ((r=4−2cosθ)),((r=6)) :}  then  S=∫_0 ^π [6^2 −(4−2cosθ)^2 ]dθ  =∫_0 ^π (20+16cosθ−4cos^2 θ)dθ  =(20θ+16sinθ)∣_0 ^π −2∫_0 ^π (1+cos2θ)dθ  =20𝛑−(2𝛉+sin2𝛉)∣_0 ^𝛑 =18𝛑  If the figure is bounded  { ((r=4−2cosθ)),((r=6+2cosθ)) :}then  S=∫_0 ^((2π)/3) [(6+2cosθ)^2 −(4−2cosθ)^2 ]dθ  =∫_0 ^((2π)/3) (20+40cosθdθ=(20θ+40sinθ)∣_0 ^((2π)/3)   =20×((2𝛑)/3)+40×((√3)/2)=((40𝛑)/3)−20(√(3 )) ≈76.53
Ifthefigureisboundedby{r=42cosθr=6thenS=0π[62(42cosθ)2]dθ=0π(20+16cosθ4cos2θ)dθ=(20θ+16sinθ)0π20π(1+cos2θ)dθ=20π(2θ+sin2θ)0π=18πIfthefigureisbounded{r=42cosθr=6+2cosθthenS=02π3[(6+2cosθ)2(42cosθ)2]dθ=02π3(20+40cosθdθ=(20θ+40sinθ)02π3=20×2π3+40×32=40π320376.53
Commented by 1549442205 last updated on 09/Jul/20
Answered by Ar Brandon last updated on 09/Jul/20
  Area , A=∫_((2π)/3) ^((4π)/3) ∫_(4−2cosθ) ^(6+2cosθ) rdrdθ=∫_((2π)/3) ^((4π)/3) [(r^2 /2)]_(4−2cosθ) ^(6+2cosθ) dθ  ⇒A=(1/2)∫_((2π)/3) ^((4π)/3) {(6+2cosθ)^2 −(4−2cosθ)^2 }dθ           =(1/2)∫_((2π)/3) ^((4π)/3) {(36+24cosθ+4cos^2 θ)−(16−16cosθ+4cos^2 θ)}dθ           =(1/2)∫_((2π)/3) ^((4π)/3) (20+40cosθ)dθ=[((20θ+40sinθ)/2)]_((2π)/3) ^((4π)/3)            =(1/2)[20×((4π)/3)−40×((√3)/2)−20×((2π)/3)+40×((√3)/2)]           =((20)/3)π square units
Area,A=2π34π342cosθ6+2cosθrdrdθ=2π34π3[r22]42cosθ6+2cosθdθA=122π34π3{(6+2cosθ)2(42cosθ)2}dθ=122π34π3{(36+24cosθ+4cos2θ)(1616cosθ+4cos2θ)}dθ=122π34π3(20+40cosθ)dθ=[20θ+40sinθ2]2π34π3=12[20×4π340×3220×2π3+40×32]=203πsquareunits
Answered by bemath last updated on 09/Jul/20

Leave a Reply

Your email address will not be published. Required fields are marked *