Menu Close

Find-the-area-common-to-min-x-y-2-and-max-x-y-4-x-denotes-the-greatest-integer-less-than-or-equal-to-x-




Question Number 38568 by ajfour last updated on 27/Jun/18
Find the area common to  min{[x], [y] } =2   and  max{[x], [y] } =4 .  [x] denotes the greatest integer  less than or equal to x.
$${Find}\:{the}\:{area}\:{common}\:{to} \\ $$$${min}\left\{\left[{x}\right],\:\left[{y}\right]\:\right\}\:=\mathrm{2}\:\:\:{and} \\ $$$${max}\left\{\left[{x}\right],\:\left[{y}\right]\:\right\}\:=\mathrm{4}\:. \\ $$$$\left[{x}\right]\:{denotes}\:{the}\:{greatest}\:{integer} \\ $$$${less}\:{than}\:{or}\:{equal}\:{to}\:{x}. \\ $$
Commented by ajfour last updated on 27/Jun/18
Right sketch,right answer Sir.  Find area bounded by  min{∣x∣,∣y∣}=2  max{∣x∣,∣y∣}=4
$${Right}\:{sketch},{right}\:{answer}\:{Sir}. \\ $$$${Find}\:{area}\:{bounded}\:{by} \\ $$$${min}\left\{\mid{x}\mid,\mid{y}\mid\right\}=\mathrm{2} \\ $$$${max}\left\{\mid{x}\mid,\mid{y}\mid\right\}=\mathrm{4} \\ $$
Commented by MrW3 last updated on 27/Jun/18
Commented by MrW3 last updated on 27/Jun/18
common area = 2
$${common}\:{area}\:=\:\mathrm{2} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Jun/18
area=8^2 −4^2 =64−16=48
$${area}=\mathrm{8}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} =\mathrm{64}−\mathrm{16}=\mathrm{48} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Jun/18
area formed by ∣x∣=4 and∣y∣=4  is8×8=64  area formed by ∣x∣=2 and ∣y∣=2 is=4×4=16  so=area required 64−16=48
$${area}\:{formed}\:{by}\:\mid{x}\mid=\mathrm{4}\:{and}\mid{y}\mid=\mathrm{4}\:\:{is}\mathrm{8}×\mathrm{8}=\mathrm{64} \\ $$$${area}\:{formed}\:{by}\:\mid{x}\mid=\mathrm{2}\:{and}\:\mid{y}\mid=\mathrm{2}\:{is}=\mathrm{4}×\mathrm{4}=\mathrm{16} \\ $$$${so}={area}\:{required}\:\mathrm{64}−\mathrm{16}=\mathrm{48} \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Jun/18
Commented by ajfour last updated on 27/Jun/18
min{ } , max{ } has a meaning.
$${min}\left\{\:\right\}\:,\:{max}\left\{\:\right\}\:{has}\:{a}\:{meaning}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Jun/18
you solve the question...
$${you}\:{solve}\:{the}\:{question}… \\ $$
Commented by MrW3 last updated on 27/Jun/18
area bounded by  min{[x],[y]}=2  max{[x],[y]}=4  is 8.    area bounded by  min{∣x∣,∣y∣}=2  max{∣x∣,∣y∣}=4  is 16.
$${area}\:{bounded}\:{by} \\ $$$${min}\left\{\left[{x}\right],\left[{y}\right]\right\}=\mathrm{2} \\ $$$${max}\left\{\left[{x}\right],\left[{y}\right]\right\}=\mathrm{4} \\ $$$${is}\:\mathrm{8}. \\ $$$$ \\ $$$${area}\:{bounded}\:{by} \\ $$$${min}\left\{\mid{x}\mid,\mid{y}\mid\right\}=\mathrm{2} \\ $$$${max}\left\{\mid{x}\mid,\mid{y}\mid\right\}=\mathrm{4} \\ $$$${is}\:\mathrm{16}. \\ $$
Commented by ajfour last updated on 27/Jun/18
Area for the second one is 16.
$${Area}\:{for}\:{the}\:{second}\:{one}\:{is}\:\mathrm{16}. \\ $$
Commented by MrW3 last updated on 27/Jun/18
you′r right.
$${you}'{r}\:{right}. \\ $$
Commented by MrW3 last updated on 27/Jun/18
Commented by ajfour last updated on 27/Jun/18
Great,  Sir. you are fast.
$${Great},\:\:{Sir}.\:{you}\:{are}\:{fast}. \\ $$
Commented by ajfour last updated on 28/Jun/18
Too Good Sir.
$${Too}\:{Good}\:{Sir}. \\ $$
Commented by MrW3 last updated on 28/Jun/18
Commented by MrW3 last updated on 28/Jun/18
the pink color area is also bounded  area which is 64−16=48.
$${the}\:{pink}\:{color}\:{area}\:{is}\:{also}\:{bounded} \\ $$$${area}\:{which}\:{is}\:\mathrm{64}−\mathrm{16}=\mathrm{48}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *