Menu Close

Find-the-area-enclosed-between-curves-y-2-2a-x-x-3-and-line-x-2-above-the-x-axis-Graphing-calculators-are-not-allowed-




Question Number 46103 by rahul 19 last updated on 21/Oct/18
Find the area enclosed between curves  y^2 (2a−x)=x^3  and line x=2 above the  x−axis ?  Graphing calculators are not allowed..
$${Find}\:{the}\:{area}\:{enclosed}\:{between}\:{curves} \\ $$$${y}^{\mathrm{2}} \left(\mathrm{2}{a}−{x}\right)={x}^{\mathrm{3}} \:{and}\:{line}\:{x}=\mathrm{2}\:{above}\:{the} \\ $$$${x}−{axis}\:? \\ $$$${Graphing}\:{calculators}\:{are}\:{not}\:{allowed}.. \\ $$
Commented by rahul 19 last updated on 21/Oct/18
I′m stuck in drawing graph of above  curve....pls tell steps to draw it.
$${I}'{m}\:{stuck}\:{in}\:{drawing}\:{graph}\:{of}\:{above} \\ $$$${curve}….{pls}\:{tell}\:{steps}\:{to}\:{draw}\:{it}. \\ $$
Commented by ajfour last updated on 21/Oct/18
any info about a ?
$${any}\:{info}\:{about}\:{a}\:? \\ $$
Commented by rahul 19 last updated on 21/Oct/18
Sir, here it′s  a +ve constant.
$${Sir},\:{here}\:{it}'{s}\:\:{a}\:+{ve}\:{constant}. \\ $$
Answered by ajfour last updated on 21/Oct/18
Commented by ajfour last updated on 21/Oct/18
y^2 (2a−x)=x^3   y^2  = (x^3 /(2a−x))  > 0  if x >0  ⇒  2a−x > 0  ⇒   x < 2a  if x < 0  ⇒  2a−x < 0  ⇒   x > 2a  (not possible)  2y(dy/dx) = ((3x^2 (2a−x)+x^3 )/((2a−x)^2 ))          2y(dy/dx) = ((2x^2 (3a−x))/((2a−x)^2 ))     required area= ∫_0 ^(  2) ((x(√x))/( (√(2a−x))))dx      let   x=2asin^2 θ  for x=2,   θ_0  = sin^(−1) (1/( (√a)))    Area = ∫_0 ^(  θ_0 )  ((2a(√(2a)) sin^3 θ(4asin θcos θ)dθ)/( (√(2a)) cos θ))    = 2a^2 ∫_0 ^(  θ_0 ) (1−cos 2θ)^2 dθ  .
$${y}^{\mathrm{2}} \left(\mathrm{2}{a}−{x}\right)={x}^{\mathrm{3}} \\ $$$${y}^{\mathrm{2}} \:=\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}{a}−{x}}\:\:>\:\mathrm{0} \\ $$$${if}\:{x}\:>\mathrm{0}\:\:\Rightarrow\:\:\mathrm{2}{a}−{x}\:>\:\mathrm{0} \\ $$$$\Rightarrow\:\:\:{x}\:<\:\mathrm{2}{a} \\ $$$${if}\:{x}\:<\:\mathrm{0}\:\:\Rightarrow\:\:\mathrm{2}{a}−{x}\:<\:\mathrm{0} \\ $$$$\Rightarrow\:\:\:{x}\:>\:\mathrm{2}{a}\:\:\left({not}\:{possible}\right) \\ $$$$\mathrm{2}{y}\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{3}{x}^{\mathrm{2}} \left(\mathrm{2}{a}−{x}\right)+{x}^{\mathrm{3}} }{\left(\mathrm{2}{a}−{x}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}{y}\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}{x}^{\mathrm{2}} \left(\mathrm{3}{a}−{x}\right)}{\left(\mathrm{2}{a}−{x}\right)^{\mathrm{2}} } \\ $$$$\:\:\:{required}\:{area}=\:\int_{\mathrm{0}} ^{\:\:\mathrm{2}} \frac{{x}\sqrt{{x}}}{\:\sqrt{\mathrm{2}{a}−{x}}}{dx} \\ $$$$\:\:\:\:{let}\:\:\:{x}=\mathrm{2}{a}\mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$${for}\:{x}=\mathrm{2},\:\:\:\theta_{\mathrm{0}} \:=\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{{a}}} \\ $$$$\:\:{Area}\:=\:\int_{\mathrm{0}} ^{\:\:\theta_{\mathrm{0}} } \:\frac{\mathrm{2}{a}\sqrt{\mathrm{2}{a}}\:\mathrm{sin}\:^{\mathrm{3}} \theta\left(\mathrm{4}{a}\mathrm{sin}\:\theta\mathrm{cos}\:\theta\right){d}\theta}{\:\sqrt{\mathrm{2}{a}}\:\mathrm{cos}\:\theta} \\ $$$$\:\:=\:\mathrm{2}{a}^{\mathrm{2}} \int_{\mathrm{0}} ^{\:\:\theta_{\mathrm{0}} } \left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta\right)^{\mathrm{2}} {d}\theta\:\:. \\ $$
Commented by rahul 19 last updated on 21/Oct/18
Thank you sir ! ����

Leave a Reply

Your email address will not be published. Required fields are marked *