Menu Close

Find-the-area-enclosed-between-curves-y-2-2a-x-x-3-and-line-x-2-above-the-x-axis-Graphing-calculators-are-not-allowed-




Question Number 46103 by rahul 19 last updated on 21/Oct/18
Find the area enclosed between curves  y^2 (2a−x)=x^3  and line x=2 above the  x−axis ?  Graphing calculators are not allowed..
Findtheareaenclosedbetweencurvesy2(2ax)=x3andlinex=2abovethexaxis?Graphingcalculatorsarenotallowed..
Commented by rahul 19 last updated on 21/Oct/18
I′m stuck in drawing graph of above  curve....pls tell steps to draw it.
Imstuckindrawinggraphofabovecurve.plstellstepstodrawit.
Commented by ajfour last updated on 21/Oct/18
any info about a ?
anyinfoabouta?
Commented by rahul 19 last updated on 21/Oct/18
Sir, here it′s  a +ve constant.
Sir,hereitsa+veconstant.
Answered by ajfour last updated on 21/Oct/18
Commented by ajfour last updated on 21/Oct/18
y^2 (2a−x)=x^3   y^2  = (x^3 /(2a−x))  > 0  if x >0  ⇒  2a−x > 0  ⇒   x < 2a  if x < 0  ⇒  2a−x < 0  ⇒   x > 2a  (not possible)  2y(dy/dx) = ((3x^2 (2a−x)+x^3 )/((2a−x)^2 ))          2y(dy/dx) = ((2x^2 (3a−x))/((2a−x)^2 ))     required area= ∫_0 ^(  2) ((x(√x))/( (√(2a−x))))dx      let   x=2asin^2 θ  for x=2,   θ_0  = sin^(−1) (1/( (√a)))    Area = ∫_0 ^(  θ_0 )  ((2a(√(2a)) sin^3 θ(4asin θcos θ)dθ)/( (√(2a)) cos θ))    = 2a^2 ∫_0 ^(  θ_0 ) (1−cos 2θ)^2 dθ  .
y2(2ax)=x3y2=x32ax>0ifx>02ax>0x<2aifx<02ax<0x>2a(notpossible)2ydydx=3x2(2ax)+x3(2ax)22ydydx=2x2(3ax)(2ax)2requiredarea=02xx2axdxletx=2asin2θforx=2,θ0=sin11aArea=0θ02a2asin3θ(4asinθcosθ)dθ2acosθ=2a20θ0(1cos2θ)2dθ.
Commented by rahul 19 last updated on 21/Oct/18
Thank you sir ! ����

Leave a Reply

Your email address will not be published. Required fields are marked *