Menu Close

Find-the-area-enclosed-by-the-curve-y-4-3x-2-and-the-x-axis-between-x-1-1-and-x-2-1-Mastermind-




Question Number 171006 by Mastermind last updated on 06/Jun/22
Find the area enclosed by the curve  y=4−3x^2  and the x−axis between  x_1 =−1 and x_2 =1.    Mastermind
$${Find}\:{the}\:{area}\:{enclosed}\:{by}\:{the}\:{curve} \\ $$$${y}=\mathrm{4}−\mathrm{3}{x}^{\mathrm{2}} \:{and}\:{the}\:{x}−{axis}\:{between} \\ $$$${x}_{\mathrm{1}} =−\mathrm{1}\:{and}\:{x}_{\mathrm{2}} =\mathrm{1}. \\ $$$$ \\ $$$${Mastermind} \\ $$
Commented by kaivan.ahmadi last updated on 09/Jun/22
∫_(−1) ^1 (4−3x^2 )dx=(4x−x^3 )∣_(−1) ^1 =4−1+4−1=6
$$\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\mathrm{4}−\mathrm{3}{x}^{\mathrm{2}} \right){dx}=\left(\mathrm{4}{x}−{x}^{\mathrm{3}} \right)\mid_{−\mathrm{1}} ^{\mathrm{1}} =\mathrm{4}−\mathrm{1}+\mathrm{4}−\mathrm{1}=\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *